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Quantum Computing
• Classical computers: Classical bits 0 vs 1


• Quantum computers: Quantum bits (qubit)  
   where  and  are complex numbers  


• Quantum entanglements: A unique property of quantum physics 
—> No analog in the classical computer


• Famous algorithms:

–Shor’s algorithm: Can be used to break the state-of-the-art 
public key cryptography systems such as RSA

–Grover’s algorithm: Quadratic speedup in unstructured search

• Designing a quantum algorithm is non-trivial task


• Even harder in the noisy quantum machines

|Ψ⟩ = α |0⟩ + β |1⟩ α β
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Schrödinger's cat from AI’s 
imagination!



Quantum Computing
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Quantum computers from 
ChatGPT’s imagination!Quantum computing in the NISQ era [1]

[1] SAXENA, Anshul, et al. Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making. Packt Publishing Ltd, 2023.




Quantum States
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Quantum Operations
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Quantum Operations
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[e−i(ϕ+ω)/2 cos(θ/2) e−i(ϕ−ω)/2 sin(θ/2)
e−i(ϕ−ω)/2 sin(θ/2) ei(ϕ+ω)/2 cos(θ/2) ]R(ϕ, θ, ω)

Bloch sphere

In QML, the angles  are learnable. ϕ, θ, ω



Quantum Operations
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Ry(ϕ)

Rx(ϕ)

Rz(ϕ)

= e−iϕσy/2 = [cos(ϕ/2) −sin(ϕ/2)
sin(ϕ/2) cos(ϕ/2) ]

= e−iϕσx/2 = [ cos(ϕ/2) −i sin(ϕ/2)
−i sin(ϕ/2) cos(ϕ/2) ]

= e−iϕσz/2 = [e−iϕ/2 0
0 eiϕ/2]



Quantum Operations
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⨁

CNOT
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|0⟩

|0⟩

|1⟩

|0⟩

Result

|0⟩

|0⟩

|1⟩

|1⟩
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Quantum Machine Learning

CC CQ

QC QQ

Ty
pe
 o
f 
Da
ta

Type of Algorithm

Q
ua
nt
um

Cl
as
si
ca
l

QuantumClassical

13



Hybrid Quantum-Classical Paradigm
Quantum Computer

Classical Computer

Quantum measurement outcomes

Updated quantum circuit parameters

Optimization
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Variational Quantum Circuits
• Also known as parameterized quantum circuits (PQC).


• Quantum circuits with tunable parameters.


• Subject to iterative optimization procedures.


• : encoding circuit.


•  : variational circuit.


•           : measurement.

U(x)

V(θ)
𝑈(x) 𝑉(𝜃)

|0⟩
|0⟩
|0⟩
|0⟩
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Variational Quantum Circuits
• Choosing some observables (e.g. Pauli-X, Y or Z)


• Expectation value from a particular qubit:  


• Quantum function (output from the VQC): 


• Gradient calculation by parameter-shift rule.

⟨B̂k⟩ = ⟨0 U†( ⃗x)V†( ⃗θ)B̂kV( ⃗θ)U( ⃗x) 0⟩
f( ⃗x; ⃗θ) = (⟨B̂1⟩, ⋯, ⟨B̂n⟩)
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Quantum Encoding and State Preparation

|ψ⟩ = ∑
(q1,q2,⋯,qN)∈{0,1}

cq1,q2,⋯,qN
q1⟩ ⊗ q2⟩ ⊗ ⋯ ⊗ qN⟩

where  is the complex amplitude for each basis state and each cq1,⋯,qN
∈ ℂ qi ∈ {0,1}

∑
(q1,⋯,qN)∈{0,1}

cq1,⋯,qN

2 = 1The total probability is equal to 1:

A general  qubit quantum state can be represented as:N
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Quantum Encoding and State Preparation
Amplitude Encoding Variational Encoding (Angle Encoding)

Encode a vector  into a 
-qubit quantum state:

(α0, ⋯, α2n−1) n

|Ψ⟩ = α0 |00⋯0⟩ + ⋯ + α2n−1 |11⋯1⟩

where  are real numbers and  
 is normalized

αi
(α0, ⋯, α2n−1)

-dimensional vector will require only 
 qubits to encode

N
log2(N)

Simpler implementation than amplitude 
encoding

Input numbers  are used as quantum 
rotation angles

x1⋯xn

19



Interfacing with Classical ML
|0⟩
|0⟩

𝑈𝑖(𝜃𝑖)

𝑈𝑗(𝜃𝑗)
|0⟩
|0⟩

𝑈𝑘(𝜃𝑘)

H
[sin(𝑥), 𝑦]

𝑥3 + 𝑦2
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Interfacing with Classical ML
1. Mixing classical and quantum computing components.


2. These classical and quantum nodes are arranged in a directed acyclic 
graph (DAG).


3. The hybrid architecture is similar to the one in deep learning models.


4. The whole model can be trained with backpropagation method or other 
gradient-free methods, such as evolutionary optimization.


5. The next question is “How to calculate the gradient of a quantum 
node?”

21



|0⟩
|0⟩
|0⟩
|0⟩

U0(x)

Ui(θi)

Uj(θj)

Uk(θk)

Ul(θl)

Quantum Gradients

Quantum encoding / state preparation circuit 

Learnable quantum circuit parameters

Quantum measurements
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Quantum Gradients

U0(x) |0⟩

|0⟩
|0⟩
|0⟩
|0⟩

U0(x)

Ui(θi)

Uj(θj)

Uk(θk)

Ul(θl)

⟨0 U†
0 (x)U†

i (θi) B̂Ui (θi) U0(x) 0⟩
Ui (θi) U0(x) |0⟩
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Quantum Gradients

Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98(3), 032309.
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic gradients on quantum 
hardware. Physical Review A, 99(3), 032331.
https://creativecommons.org/licenses/by/4.0/

f (x; θi) = ⟨0 U†
0 (x)U†

i (θi) B̂Ui (θi) U0(x) 0⟩ = ⟨x U†
i (θi) B̂Ui (θi) x⟩

𝑥: input value


: encoding circuit


𝑖: circuit parameter index


: single-qubit rotation generated by the 
Pauli operators

U0(x)

Ui(xi)

24
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Quantum Gradients
The gradient of  with respect to the parameter  is:𝑓 𝜃𝑖

This value can be calculated via running two quantum circuits 
with shifted parameters, the so-called parameter-shift rule.

Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98(3), 032309.
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic gradients on quantum 
hardware. Physical Review A, 99(3), 032331.
https://creativecommons.org/licenses/by/4.0/

∇θi
f (x; θi) =

1
2 [f (x; θi +

π
2 ) − f (x; θi −

π
2 )]

25
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Automatic Differentiation
1. Chain rule! 

2. Directed acyclic graphs (DAG)


3. Using known gradient calculation


4. Workhorse of modern deep learning.


5. Quantum node is a black-box 

6. Backpropagate through the computational graph, not the quantum node 
itself!
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Open Source
• Quantum Computing/QML platforms: Qiskit, 

PennyLane, TorchQuantum, TensorFlow Quantum…


• Simulation backends: Qulacs, cuQuantum...

27
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Quantum Circuit Learning
• First VQC-based QML model.


• Can perform simple “classification” 
ans “function approximation”

31Mitarai, Kosuke, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. "Quantum circuit 
learning." Physical Review A 98, no. 3 (2018): 032309.



Quantum CNN

Chen, S. Y. C., Wei, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural networks for high energy 
physics data analysis. Physical Review Research, 4(1), 013231.

Quantum CNN

Input Conv1 Pool1 Conv2

Convolution Subsample Convolution

|0i Ry(arctan(x1)) Rz(arctan(x21)) • R(↵1,�1, �1)

|0i Ry(arctan(x2)) Rz(arctan(x22)) • R(↵2,�2, �2)

|0i Ry(arctan(x3)) Rz(arctan(x23)) • R(↵3,�3, �3)

|0i Ry(arctan(x4)) Rz(arctan(x24)) • R(↵4,�4, �4)

FIG. 2. Variational quantum circuit component for QCNN. The single-qubit gates

Ry(arctan(xi)) and Rz(arctan(x2i )) represent rotations along y-axis and z-axis by the given an-

gle arctan(xi) and arctan(x2i ), respectively. The choose of arc tangent function is that in general

the input values are not in the interval of [�1, 1]. The CNOT gates are used to entangle quantum

states from each qubit and R(↵,�, �) represents the general single qubit unitary gate with three

parameters. The parameters labeled Ry(arctan(xi)) and Ry(arctan(x2i )) are for state preparation

and are not subject to iterative optimization. Parameters labeled ↵i, �i and �i are the ones for

iterative optimization. Note that the number of qubits and the number of measurements can be

adjusted to fit the problem of interest and the grouped box may repeat several times to increase

the number of parameters, subject to the capacity and capability of the quantum machines used

for the experiments.

VI. DISCUSSION

VII. CONCLUSION

ACKNOWLEDGMENTS

We wish to acknowledge the support of the author community in using REVTEX, o↵ering

suggestions and encouragement, testing new versions, . . . .

Appendix A: Appendixes
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Quantum CNN
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x1 x2

x3 x4

Quantum Convolution FIlter

θi = arctan(xi)
ϕi = arctan(x2

i )

Pixel values (x1, x2, x3, x4)

Transform the 
input pixel values 

into angles

Load the angles into 
the quantum circuit

Read out the data

Input Image

Scan over the input image
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Quantum CNN

Chen, S. Y. C., Wei, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural 
networks for high energy physics data analysis. Physical Review Research, 4(1), 013231.

34

mu+ vs proton

mu+ vs e-

QCNN wins!

QCNN reaches high accuracy 
with smaller number of epochs!
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Why Federated Learning?

36

Having all data in a 
single storage is very 
hard in real-world 
applications!

Medical Applications Network ApplicationsFinance Applications

Cannot share UAV data 
(comm overhead & reliability issue)Cannot share patients’ data 

(privacy issue)

Cannot share clients’ data 
(privacy & regulations issue)



Quantum Federated Learning

Chen, S. Y. C., & Yoo, S. (2021). Federated quantum machine learning. Entropy, 23(4), 460.

Federated Quantum Learning

Training on local 
quantum 
computers

θt → θt+1

U(θ)

θt+1

Sending model 
parameter 
updates

Global model

Θ

Θ

θt+1

Global parameter 
aggregation

U(θ)
U(θ)

ϕt+1⋯

U(θ)

θ
Send global model 
to local quantum 
computers

Initial parameters

Quantum Transfer Learning
Encoder

Dataset Pre-trained 
model
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Quantum Federated Learning

Chen, S. Y. C., & Yoo, S. (2021). Federated quantum machine learning. Entropy, 23(4), 460.
38



Quantum Federated Learning with Quantum Data

39
Chehimi, M., & Saad, W. (2022, May). Quantum federated learning with quantum data. In ICASSP 
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) (pp. 8617-8621). IEEE.



Quantum Federated ML with Differential Privacy

40
Watkins, W. M., Chen, S. Y. C., & Yoo, S. (2023). Quantum machine learning with differential privacy. Scientific Reports, 13(1), 2453.

Rofougaran, R., Yoo, S., Tseng, H. H., & Chen, S. Y. C. (2023). Federated Quantum Machine Learning with Differential Privacy. ICASSP 
2024
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Quantum LSTM
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RNN

Unfold

Recurrent neural networks (RNN)



Quantum LSTM
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LSTMCell

σ σ σtanh

⊗ ⊕
⊗

tanh

⊗

xt

ht−1

ct−1

ht

ct

Wf Wi WC Wo

(Classical) Long short-term memory (LSTM)

(at time step t)
Classical Neural Networks



Quantum LSTM
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VQC1

σ σ σtanh

⊗ ⊕
⊗

tanh

⊗

xt

ht−1

ct−1

yt

VQC2 VQC3 VQC4 VQC5

VQC6

ht

ct

Classical  
Post-processing

(Optional)

Variational Quantum Circuits



Quantum LSTM

Chen, S. Y. C., Yoo, S., & Fang, Y. L. L. (2022, May). Quantum long short-term 
memory. In ICASSP 2022-2022 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP) (pp. 8622-8626). IEEE.

45

time series = x1, x2, x3, x4, x5, x6, x7, ⋯

given

predict



Federated QLSTM

46
Chehimi, M., Chen, S. Y. C., Saad, W., & Yoo, S. (2024). Federated quantum long short-term memory (FedQLSTM). Quantum Machine Intelligence, 6(2), 43.



Federated QLSTM

47
Chehimi, M., Chen, S. Y. C., Saad, W., & Yoo, S. (2024). Federated quantum long short-term memory (FedQLSTM). Quantum Machine Intelligence, 6(2), 43.

Bessel functions Delayed Quantum Control functions
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Quantum RL

49

Hybrid RL Agent

action
at

statest
reward
rt

Quantum Circuit Classical Computer

Deep RL algorithm

θ

Update circuit parameters

Output from Quantum Circuit

U(x) V(θ)

|0⟩
|0⟩
|0⟩
|0⟩

Environment



Quantum RL
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Quantum RL

IEEE Access, 8, 141007-141024.
51



Quantum RL

52

• Environment with 16 states​


• States numbered as 0-15​


• Example: ​


• State 12: 1100 -> 1,1,0,0


• Rotation:


• Result:




Quantum Policy Gradient

Jerbi, S., Gyurik, C., Marshall, S., Briegel, H., & Dunjko, V. (2021). Parametrized 
quantum policies for reinforcement learning. Advances in Neural Information 
Processing Systems, 34, 28362-28375.



Asynchronous QRL
• Multiple concurrent actors learning 

the policy through parallelization.


• Executing multiple agents on 
multiple instances of the 
environments.


• Allowing the agents to encounter 
diverse states at on-policy RL such 
as actor-critic.


• No need of replay memory.
Chen, S. Y. C. (2023). Asynchronous training of quantum reinforcement 
learning. Procedia Computer Science, 222, 321-330.



Asynchronous QRL

Chen, S. Y. C. (2023). Asynchronous training of quantum reinforcement learning. Procedia Computer Science, 222, 321-330.
S9N1 S9N2 S9N3

CartPole

Acrobot



Quantum RL with QLSTM
• Motivation: Many real-world 

environments are only partially 
observable. The AI can only receive 
partial information of the world.


• Challenges: Existing QRL 
architectures do not have the 
capabilities to memorize previous 
time steps.


• Approach: Could quantum recurrent 
neural nets (QRNN) be helpful in 
QRL?

Chen, S. Y. C. (2023, June). Quantum deep recurrent 
reinforcement learning. In ICASSP 2023-2023 IEEE International 
Conference on Acoustics, Speech and Signal Processing 
(ICASSP) (pp. 1-5). IEEE.
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Quantum RL with QLSTM

Chen, S. Y. C. (2023, June). Quantum deep recurrent reinforcement 
learning. In ICASSP 2023-2023 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.

Quantum models use smaller 
number of parameters

Quantum models show higher 
or more stable scores

Env: CartPole

57



QLSTM without training?
• Motivation: Time-series modeling is 

an important task in machine 
learning. Recurrent neural network 
(quantum or classical) is one of the 
framework to model time-series.


• Challenges: Quantum RNN (e.g. 
QLSTM) training are computationally 
expensive, requiring gradient 
calculation of deep quantum circuit 
models. (Backpropagation-
Through-Time (BPTT) is slow!)

Chen, S. Y. C. (2024, April). Efficient quantum recurrent reinforcement learning via quantum 
reservoir computing. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP) (pp. 13186-13190). IEEE.



• Approach: Adopt the classical idea of 
reservoir computing in the quantum 
regime: treating the quantum RNN as 
a reservoir. (The quantum parameters 
are randomly initialized and fixed. 
Only the final classical layers are 
trained.)


• Results: Previous works show that 
the QRNN within the reservoir 
computing framework can reach 
comparable performance to fully 
trained ones.

VQCs are NOT trained

Chen, S. Y. C. (2024, April). Efficient quantum recurrent reinforcement learning via quantum 
reservoir computing. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP) (pp. 13186-13190). IEEE.



×L

(a) (b) (c) (d) (e) (f)

Chen, S. Y. C. (2024, April). Efficient quantum recurrent reinforcement 
learning via quantum reservoir computing. In ICASSP 2024-2024 
IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP) (pp. 13186-13190). IEEE.

Environment:

VQC in QLSTM:



Don’t want ANY quantum 
RNN?

61



Classical FWP

⋮⋮ ⋮
input

⋮
⋮

input

output

Slow Programmer 
(Trained by Gradient Descent)

Fast Programmer 
(Updated by Slow Programmer)

Schmidhuber, J. (1992). Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1), 131-139.



Learning to Program a VQC

63

• Classical NN generates circuit parameter 
updates for each “layer” and “qubit”.


• Use tensor product to generate 
parameter updates for all parameterized 
gates.

[Li] ⊗ [Qj] = [Mij]
= [Li × Qj]

=

L1 × Q1L1 × Q2⋯L1 × Qn

L2 × Q1L2 × Q2⋯L2 × Qn
⋮ ⋱ ⋮

Ll × Q1Ll × Q2 ⋯Ll × Qn Codes: Paper:



Learning to Program a VQC

64

Quantum Circuits Parameters 
updated by classical NN

Data encoding circuit to 
transform classical data into a 
quantum state

arXiv:2402.17760, IJCNN 2024



65Quantum FWP for damped SHM Quantum FWP for Bessel function



Learning to Program a VQC for RL

66

• Slow programmer:


• Encoder


• NN for quantum layers 


• NN for qubit index 


• Fast programmer:


• 8-qubit VQC


•  or  VQC layers

Li

Qj

L = 2 L = 4

arXiv:2402.17760, IJCNN 2024



Learning to Program a VQC for RL

67

• QLSTM baseline


• 8-qubit VQC


• 4 qubits for input


• 4 qubits for hidden dimension


• Classical NN for dimensional 
reduction, actor and critic outputs.

arXiv:2402.17760, IJCNN 2024



Learning to Program a VQC for RL

68

• Observation: 147-dimensional vector.


• Action: There are six actions: turn left, 
turn right, move forward, pick up an 
object, drop the object being carried 
and toggle. Only the first three of them 
are having actual effects in this case. 
The agent is expected to learn this fact.


• Reward: The agent receives a reward 
of 1 upon reaching the goal. A penalty 
is subtracted from this reward based on 
the formula

arXiv:2402.17760, IJCNN 2024



Learning to Program a VQC for RL

69MiniGrid-Empty-5x5 MiniGrid-Empty-6x6



• Applications 

• Quantum Classification 

• Privacy-Preserving Quantum Machine Learning (Federated Learning, 
Differential Privacy) 

• Quantum Recurrent Neural Network 

• Quantum Reinforcement Learning  

• Quantum Natural Language Processing 

• Quantum Neural Networks for Model Compression
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BERT with Quantum Temporal Convolution 
Learning

71

Yang, C. H. H., Qi, J., Chen, S. Y. C., Tsao, Y., & Chen, P. Y. (2022). When BERT Meets Quantum Temporal Convolution 
Learning for Text Classification in Heterogeneous Computing. arXiv preprint arXiv:2203.03550. ICASSP 2022



BERT with Quantum Temporal Cone Learning

72

Yang, C. H. H., Qi, J., Chen, S. Y. C., Tsao, Y., & Chen, P. Y. (2022). When BERT Meets Quantum Temporal Convolution 
Learning for Text Classification in Heterogeneous Computing. arXiv preprint arXiv:2203.03550. ICASSP 2022



Quantum Language Models

73

Li, S. S., Zhang, X., Zhou, S., Shu, H., Liang, R., Liu, H., & Garcia, L. P. (2023, June). PQLM-Multilingual Decentralized Portable 
Quantum Language Model. In ICASSP 2023



Quantum Speech Recognition
• Vertical federated learning


• Speech input are first processed into 
Mel spectrogram and then sent into a 
quantum layer for encoding (on the 
cloud ).


• The encoded features are used to 
train the acoustic model (on user 
devices).


• Can reduce model parameter 
leakage.

74

Yang, C. H. H., Qi, J., Chen, S. Y. C., Chen, P. Y., Siniscalchi, S. M., Ma, X., & Lee, C. H. (2021, June). 
Decentralizing feature extraction with quantum convolutional neural network for automatic 
speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP) (pp. 6523-6527). IEEE.



• Applications 

• Quantum Classification 

• Privacy-Preserving Quantum Machine Learning (Federated Learning, 
Differential Privacy) 

• Quantum Recurrent Neural Network 

• Quantum Reinforcement Learning  

• Quantum Natural Language Processing 

• Quantum Neural Networks for Model Compression
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• Challenges of training a QNN:


• Challenges of data encoding


• Quantum hardware requirement during inference


• Is there a way of leveraging the best part from both the quantum and 
classical NN?
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Hilbert space is a BIG place!
• Instead of preparing  initial parameters, we attempt to generate these  parameters using a 

QNN  with  qubits. 


• The size of the Hilbert space is  such that each probability  of 
a computational basis  could correspond to one of the parameters in . 


• Assuming the QNN has a polynomial depth of layers, the number of parameters is .

M M
U( ⃗ϕ ) N = ⌈log2 M⌉

2N = 2⌈log2 M⌉ ≥ M |⟨i |U( ⃗ϕ )⟩ |2

| i⟩ ⃗θ

polylog(M)

77

U( ⃗ϕ )

# of parameters: 

polylog(M)

Required qubits :

 N = ⌈log2 M⌉

-qubit quantum neural 
network with parameters  

N
⃗ϕ

?
( | i⟩, |⟨i |U( ⃗ϕ )⟩ |2 ) θi

∀i ∈ {1,2,…, M}

Liu, C. Y., Kuo, E. J., Lin, C. H. A., Young, J. G., Chang, Y. J., Hsieh, M. H., & Goan, H. S. 
(2024). Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the 
Model Compression Perspective. arXiv preprint arXiv:2405.11304.
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U( ⃗ϕ )

Classical neural network

Mapping model  with 
parameters ⃗γ

Generate ⃗θ

data

Prediction 

QNN

Evaluate 

Cost 


Function

Evaluate Gradients & Update Parameters ⃗ϕ , ⃗γ

• “Generate” the classical NN parameters by QNN


• The “trained” result is a classical NN

Liu, C. Y., Kuo, E. J., Lin, C. H. A., Young, J. G., Chang, Y. J., Hsieh, M. H., & Goan, H. S. 
(2024). Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the 
Model Compression Perspective. arXiv preprint arXiv:2405.11304.
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U( ⃗ϕ )

Classical neural network

Mapping model  with 
parameters ⃗γ

Generate ⃗θ

data

Prediction 

QNN

Evaluate 

Cost 


Function

Evaluate Gradients & Update Parameters ⃗ϕ , ⃗γ

Mapping model is required to transform (rescale) the expectation values.
Liu, C. Y., Kuo, E. J., Lin, C. H. A., Young, J. G., Chang, Y. J., Hsieh, M. H., & Goan, H. S. 
(2024). Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the 
Model Compression Perspective. arXiv preprint arXiv:2405.11304.
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( |ϕ1⟩, |⟨ϕ1 |ψ (θ )⟩ |2 )

( |ϕ2⟩, |⟨ϕ2 |ψ (θ )⟩ |2 )

( |ϕnch
⟩, |⟨ϕnch

|ψ (θ )⟩ |2 )

Global model

Local model 1

U3

U3

Local updates 

U3

U3

Local updates 

Local model 2

U3

U3

Local updates 

Local model N

…

⃗θ

Sending 

parameters

Parameter aggregationUpdate global model

Liu, C. Y., & Chen, S. Y. C. (2024). Federated quantum-train with batched parameter 
generation. arXiv preprint arXiv:2409.02763.



81

Use less training parameters by QT
• VGG-like CNN with 285226 

parameters


• QT-BG2000 with 78832 parameters 


• QT-BG1000 with 45864 parameters 


• QT-BG500 with 29396 parameters

CIFAR-10 dataset

Liu, C. Y., & Chen, S. Y. C. (2024). Federated quantum-train with batched parameter 
generation. arXiv preprint arXiv:2409.02763.



82 Liu, C. Y., & Chen, S. Y. C. (2024). Federated quantum-train with batched parameter 
generation. arXiv preprint arXiv:2409.02763.

Quantum-Train closing the gap between training acc and testing acc, 
the so called generalization error!  (arXiv:2405.11304)
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Quantum Circuit Design Challenges

84

Given a problem, we want to build something like this:



Quantum Circuit Design Challenges

85

What should be those components?

U( ⃗x) V( ⃗θ)

|0⟩
|0⟩

⋮
|0⟩

⋮

How to design the “encoding circuit”?



Quantum Circuit Design Challenges
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What should be those components?

U( ⃗x) V( ⃗θ)

|0⟩
|0⟩

⋮
|0⟩

⋮

How to design the “variational circuit”?



Quantum Circuit Design Challenges

87

• There are many options for both encoding circuit and variational circuit.


• Different initial circuit, entanglement structures, rotation gates ( , ,
)

RX RY
RZ

Image credit: PennyLane.ai



Quantum Architecture Search
• Evolutionary Optimization


• Reinforcement Learning


• Differentiable Search

88



Evolutionary QAS
• Evolutionary Optimization

89

Ding, L., & Spector, L. (2022, July). Evolutionary quantum architecture 
search for parametrized quantum circuits. In Proceedings of the Genetic 
and Evolutionary Computation Conference Companion (pp. 2190-2195).



RL for Quantum Architecture Search

90Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum architecture search via 
deep reinforcement learning. arXiv preprint arXiv:2104.07715.

Action space for QAS:



RL for Quantum Architecture Search

91Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum architecture search via 
deep reinforcement learning. arXiv preprint arXiv:2104.07715.



RL for Quantum Architecture Search

92

Dai, X., Wei, T. C., Yoo, S., & Chen, S. Y. C. (2024). Quantum Machine Learning 
Architecture Search via Deep Reinforcement Learning. arXiv preprint arXiv:2407.20147. 
IEEE QCE 2024



QRL for QAS

93

Chen, S. Y. C. (2023, August). Quantum reinforcement learning for quantum architecture search. In Proceedings of the 2023 International Workshop on Quantum Classical Cooperative (pp. 17-20).



QRL for QAS
•Qiskit simulator with OpenAI Gym wrapper


•State: Pauli-X, Y, Z expectation values for 
each qubit. (3n-dimensional vector where n 
is the number of qubits)


•Action: single qubit gates and CNOT gate


•Reward: for every step, the environment will 
feedback a –0.01 reward to encourage the 
agent to use smaller number of steps. If 
the fidelity of quantum states reach a certain 
threshold (e.g. 0.95), the reward will be 
(fidelity – 0.01) and the episode terminates.

94

Action space for QAS:

Chen, S. Y. C. (2023, August). Quantum reinforcement learning for quantum architecture search. In Proceedings of the 2023 International Workshop on Quantum Classical Cooperative (pp. 17-20).



QRL for QAS

95

• With quantum A3C 
training algorithms, the 
hybrid quantum-classical 
RL agent can find the 
circuit for Bell state (two-
qubit) and GHZ 
state (three-qubit) 

• The three-qubit case 
requires more training 
episodes.

Chen, S. Y. C. (2023, August). Quantum reinforcement learning for quantum architecture 
search. In Proceedings of the 2023 International Workshop on Quantum Classical 
Cooperative (pp. 17-20).



Challenges of Evo or RL QAS 
• Less sample-efficient, requiring a large number of interactions or iterations 

to converge to a good architecture.


• May converge slower because they explore the search space in a more 
trial-and-error manner.


• More hyperparameters (e.g., mutation rates, crossover probabilities, 
exploration/exploitation ratios)


• Scalability issues in high-dimensional search spaces (more qubits, deeper 
quantum circuits).
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Differentiable Quantum Architecture Search

97 Ref: https://arxiv.org/pdf/1806.09055

Differentiable Neural Architecture Search:

https://arxiv.org/pdf/1806.09055


Differentiable Quantum Architecture Search

• Goal: Construct quantum circuit .


• Quantum circuit  has  
sub-components.


• Each  is associated with a 
corresponding set of allowable circuit 
choices .


• denotes the number of permissible 
circuit choices for each sub-component 
.


• Number of possible realization : 

𝒞

𝒞 𝒮1, 𝒮2, ⋯, 𝒮n

𝒮i

ℬi

|ℬi |

i

𝒞
N = |ℬ1 | × |ℬ2 | × ⋯ × |ℬn |

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum 
Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024



Differentiable Quantum Architecture Search

• Structural weights: 


• Each circuit realization  is 
associated with the trainable 
parameter 


• Ensemble function 


• Loss: 


• Gradient: 

wj

𝒞j

θj

f𝒞 =
N

∑
j=1

wj f𝒞j

ℒ( f𝒞)

∇wj
ℒ( f𝒞)

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum 
Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024



Differentiable Quantum Architecture Search

2 × 3 = 6

2 × 3 = 6Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum 
Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024



Differentiable Quantum Architecture Search
Connect multiple blocks together!


If there are  possible circuit realization, then the number of total possible paths:  N NM



DiffQAS in Quantum RL

Chen, S. Y. C. (2024). Differentiable Quantum Architecture 
Search in Asynchronous Quantum Reinforcement 
Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 
2024



DiffQAS in Asynchronous QRL

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024



Results-MiniGrid-Empty

MiniGrid-Empty-5x5

• Performance of DiffQAS is similar to 
Config-1, 2 and 4.


• Config-3, 5 and 6 fail to reach good 
performance.



Results-MiniGrid-Empty

MiniGrid-Empty-6x6

• Performance of DiffQAS is similar to 
Config-1, 2 and 4.


• Config-3, 5 and 6 fail to reach good 
performance.



Results-MiniGrid-Empty

MiniGrid-Empty-8x8

• Performance of DiffQAS is similar to 
Config-1, 2 and 4.


• Config-3, 5 and 6 fail to learn the 
policy at all.



Results-MiniGrid-SImpleCrossing

MiniGrid-SimpleCrossing-S9N1

• Performance of DiffQAS is close to 
Config-1, 2 and 4.


• Config-3, 5 and 6 fail to learn the 
policy at all.



Results-MiniGrid-SImpleCrossing

MiniGrid-SimpleCrossing-S9N2

• Performance of DiffQAS is 
close to Config-1 and 2.


• Config-4 fails to reach the 
optimal score.


• Config-3, 5 and 6 fail to 
learn the policy at all.



Results-MiniGrid-SImpleCrossing

MiniGrid-SimpleCrossing-S9N3

• Performance of DiffQAS is 
close to Config-1 and 4.


• Config-2 fails to reach the 
optimal score.


• Config-3, 5 and 6 fail to 
learn the policy at all.



Learning to Measure
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Chen, S. Y. C., Tseng, H. H., Lin, H. Y., & Yoo, S. (2025). 
Learning to Measure Quantum Neural Networks. arXiv preprint 

arXiv:2501.05663.



Learning to Measure

111

Make_Moons Data VCTK Speaker Recognition Task
Chen, S. Y. C., Tseng, H. H., Lin, H. Y., & Yoo, S. (2025). 

Learning to Measure Quantum Neural Networks. arXiv preprint 
arXiv:2501.05663.
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Challenges in Quantum Machine Learning

113

Noise and Hardware

• Number of qubits


• Qubit decoherence


• Gate noise

Barren Plateau

• Vanishing gradients


• Limited model sizes

Operating Conditions

• Near-zero 
temperature


• Difficult control

Integration with Classical

• Data transfer 
between quantum 
and classical 
computers
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Conclusion and Outlook
• Quantum Machine Learning models largely depend on the hybrid 

quantum-classical framework.


• Variational Quantum Circuits (VQC) a.k.a Parameterized Quantum 
Circuits (PQC) are the building blocks of QML.


• Quantum and components can be connected as a DAG and 
backpropogation can be applied to trained the whole model in an end-
to-end manner.
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Conclusion and Outlook
• Quantum Neural Networks (QNN) can be used to build models such as 

quantum convolutional neural networks (QCNN), quantum long-short-
term memory (QLSTM) and other hybrid quantum-classical models.


• Quantum Neural Networks (QNN) can be used to generate parameters 
for classical neural networks, reducing a large amount of trainable 
parameters.


• Quantum Neural Networks (QNN) can learn value functions and policy 
functions in reinforcement learning (RL).


• Evolutionary, RL and differentiable search can be used to find good QML 
architectures or good quantum measurement methods.
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Thank You!

Feel free to reach out:

ycchen1989@ieee.org

mailto:ycchen1989@ieee.org

