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 Fundamentals of Quantum Computing



Quantum Computing

» Classical computers: Classical bits 0 vs 1

» Quantum computers: Quantum bits (qubit)
|W) = a|0) + f|1) where a and f are complex numbers

- Quantum entanglements: A unigue property of quantum physics
—> No analog in the classical computer

» Famous algorithms:
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—Shor’s algorithm: Can be used to break the state-of-the-art
public key cryptography systems such as RSA

—Grover’s algorithm: Quadratic speedup in unstructured search

* Designing a quantum algorithm is non-trivial task o
Schrodinger's cat from Al’s

» Even harder in the noisy quantum machines imagination!



Quantum Computing

Noisy Intermediate-Scale Quantum =l ; m"
where we computing v
A are today NSQ application areas: ]| -
10"~  Quantum chemistry -

e Optimization

* Machine learning

)
"é 102
S error correction
o 10° -1 ® threshold
S / fault-tolerant QC
g 104 -+
A within 5
105 - years
| | | | | | >
10 100 1,000 10,000 100,000 1M == = W
number of physical qubits Quantum computers from
Quantum computing in the NISQ era [1] ChatGPT’s imagination!

[1] SAXENA, Anshul, et al. Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making. Packt Publishing Ltd, 2023.
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Quantum States

Single Qubit State
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Two Qubit State
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Quantum Operations
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Quantum Operations
e ~HPTON2 005(0/2) e P92 5in(0/2)
_ e~ iP=026in@12) I P+ON2 05(0/2)

In QML, the angles ¢, 0, w are learnable.




Quantum Operations
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Quantum Operations

Result
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 Hybrid Quantum-Classical Paradigm
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Quantum Machine Learning

Type of Algorithm

Classical Quantum

ical
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Hybrid Quantum-Classical Paradigm

Quantum Computer

%E Quantum measurement outcomes

Classical Computer

L E

Updated quantum circuit parameters

EV[EVEV R

Optimization
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e Variational Quantum Circuits (a.k.a Parameterized Quantum Circuits)
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Variational Quantum Circuits

« Also known as parameterized quantum circuits (PQC).
» Quantum circuits with tunable parameters.
» Subject to iterative optimization procedures.
- U(X): encoding circuit. | O>

- V(0) : variational circuit. | O>

. : measurement. | O>

BB



Variational Quantum Circuits

» Choosing some observables (e.g. Pauli-X, Y or Z)

» Expectation value from a particular qubit: <I§k> = <O

—

Ut @)VI0)BVOUR)

_ Quantum function (output from the VQC): f(x; 5) = (<l§1>, e, <§n>>

» Gradient calculation by parameter-shift rule.
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Quantum Encoding and State Preparation

A general N qubit quantum state can be represented as:

[ W) = Z Ca1.q00 .y q1> & q2> QR |qN>

(Ql»%a'“»QN)E{O,l}

where ¢ 1

ey € C is the complex amplitude for each basis state and each ¢; € {0, 1}

2 _

(QI""9QN)€{091}

The total probability is equal to 1:
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Quantum Encoding and State Preparation

Amplitude Encoding Variational Encoding (Angle Encoding)
Encode a vector (ao, e, 052”_1) Into a n Input numbers Xx;---x, are used as quantum
-qubit quantum state: rotation angles
0) H — R, (arctan(x)) 11).:(_‘cll‘(’f.t‘(lll(;‘l.f%)) —

|¥Y) = a,|00---0) + -+« + ayu_¢ | 11:--1)

| ()> H R, (arctan(xzs)) R.(arct an(;]:g ) ) —

where «; are real numbers and
(ao, e, (xzn_l) IS normalized

0) H R, (arctan(x3)) R.(arct an(.’]:g ))

0) H R, (arctan(x,)) R.( ar(;tau(;‘];:zl )

N-dimensional vector will require only Simpler implementation than amplitude
log,(NN) qubits to encode encoding
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Interfacing with Classical ML




Interfacing with Classical ML

Mixing classical and quantum computing components.

These classical and quantum nodes are arranged in a directed acyclic
graph (DAG).

The hybrid architecture is similar to the one in deep learning models.

The whole model can be trained with backpropagation method or other
gradient-free methods, such as evolutionary optimization.

The next question is “How to calculate the gradient of a quantum
node?”
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Quantum Gradients

L earnable quantum circuit parameters

\4

0)
0)
0y
0)

Quantum encoding / state preparation circuit Quantum measurements

— RIBJBIN
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Quantum Gradients

Upy(x)

-1
U()(x) ‘ O>
U; (6,) Uy(x)|0)

<0 UIx)UT (6;) BU; (6;) Uy(x) o>
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Quantum Gradients

£(x:0) = <o iU (6) BU, (6) Uy)| o> = (x|u7 (0) Bu; (@

x: Input value

Uy(x): encoding circuit

i. circuit parameter index

U.(x;): single-qubit rotation generated by the
Pauli operators

Mitarai, K., Negoro, M., Kitagawa, M., & Fuijii, K. (2018). Quantum circuit learning. Physical Review A, 98(3), 032309.

Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic gradients on quantum

hardware. Physical Review A, 99(3), 032331. 24
https://creativecommaons.org/licenses/by/4.0/
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Quantum Gradients

The gradient of f with respect to the parameter 0. is:

| T T
Vof(x;0,) = > f<x; 0. +5> —f(x; 0, — 5)

This value can be calculated via running two quantum circuits
with shifted parameters, the so-called parameter-shift rule.

Mitarai, K., Negoro, M., Kitagawa, M., & Fuijii, K. (2018). Quantum circuit learning. Physical Review A, 98(3), 032309.

Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic gradients on quantum

hardware. Physical Review A, 99(3), 032331. 25
https://creativecommons.org/licenses/by/4.0/
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Automatic Differentiation

. Chain rule!

. Directed acyclic graphs (DAG)

. Using known gradient calculation

. Workhorse of modern deep learning.
. Quantum node is a black-box

. Backpropagate through the computational graph, not the guantum node
itself!
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Open Source

» Quantum Computing/QML platforms: Qiskit,
PennylLane, TorchQuantum, TensorFlow Quantum...

- Simulation backends: Qulacs, cuQuantum...

°« Torch
. Quantum

®
TensorFlow Quantum

27



 Applications
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 Applications
« Quantum Classification

* Privacy-Preserving Quantum Machine Learning (Federated Learning,
Differential Privacy)

 Quantum Recurrent Neural Network
 Quantum Reinforcement Learning
 Quantum Natural Language Processing

 Quantum Neural Networks for Model Compression
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 Applications

« Quantum Classification
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Quantum Circuit Learning

[ )

e First VQC-based QML model. 1 (8:”) 2)
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Mitarai, Kosuke, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. "Quantum circuit 31
learning." Physical Review A 98, no. 3 (2018): 032309.



Quantum CNN

Input Conv1i Poolf Conv2

Convolution Subsample Convolution

Chen, S. Y. C., Wei, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural networks for high energy
physics data analysis. Physical Review Research, 4(1), 013231. 32




Quantum CNN

Scan over the input image

Pixel values (X, X5, X3, X,)
Read out the data
Transform the

Input Image input pixel values
into angles

Quantum Convolution Fliter
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Load the angles into
the quantum circuit

Chen, S. Y. C., Weij, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural networks for high energy
physics data analysis. Physical Review Research, 4(1), 013231. 33
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Quantum CNN
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FIG. 8. QCNN on binary classification of muon vs proton. Training the QCNN for the classification of ©™ and p. The filter size is 3 in the
first convolutional layer and 2 in the second convolutional layer. There is 1 channel in both convolutional layers. The numbers of parameters in
this setting are 9 x 3 x 2 = 54 in the first convolutional layer, 4 x 3 x 2 = 24 in the second convolutional layer, and 14 x 14 x 1 x 2+ 2 =
394 in the fully connected layer. The total number of parameters is 54 + 24 + 394 = 472.

Mmu+ VS proton
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Chen, S.Y.C., Wei, T. C., Zhang, C., Yu, H., & Yoo, S. (2022). Quantum convolutional neural
networks for high energy physics data analysis. Physical Review Research, 4(1), 013231.
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 Applications

* Privacy-Preserving Quantum Machine Learning (Federated Learning,
Differential Privacy)
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Why Federated Learning?

Having all data in a
single storage Is very
hard in real-world
applications!

Finance Applications Medical Applications Network Applications

Cannot share clients’ data Cannot share UAV data

(privacy & regulations issue) . S.h are p_atlents - (comm overhead & reliability issue)
(privacy issue)

.

36



Quantum Federated Learning

Training on local Send global model n il DIREES
quantum * to local quantum | e _ gty 4
computers computers : N
100 -
91 —> 9t+1 ,(| Ha 2 A Ty
~ 7ol :"'-.-. 5 v ;
VO] *------ A 200 SN ELAIEE.
i
i
i
i
i
i
i
: Dataset Pr(:r-"gg:;ed
v

Sending model
parameter
updates

Global parameter

. Global model
aggregation

Chen, S. Y. C., & Yoo, S. (2021). Federated quantum machine learning. Entropy, 23(4), 460.
37



Quantum Federated Learning

FL (1 local epoch) FL (2 local epochs) FL (4 local epochs) Non-FL
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0.21 m— | 0SS Train 0.2 m— | 0SS Train 0.2 0SS Train 0.2 | 0SS Train
m—— AcCcuracy Test = AcCcuracy Test = AcCcuUracy Test —— AcCcuracy Test
Loss Test Loss Test Loss Test Loss Test
0.075 25 50 75 100 %00 25 50 75 100 200 25 50 75 100 200 25 50 75 100
Round # Round # Round # Epoch #

Figure 8. Results: Planes vs. Cars.

Table 3. Comparison of performance in different training schemes with CIFAR (Planes vs. Cars)

dataset.

Training Loss

Testing Loss

Testing Accuracy

Federated Training (1 local epoch)  0.4029 0.4133 93.40%
Federated Training (2 local epochs) 0.4760 0.4056 94.05%
Federated Training (4 local epochs) 0.4090 0.3934 93.45%
Non-Federated Training 0.4190 0.4016 93.65%

Chen, S. Y. C., & Yoo, S. (2021). Federated quantum machine learning. Entropy, 23(4), 460.
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Quantum Federated Learning with Quantum Data

Server
(5G Infrastructure)

Federated
Averaging

Classical\Wireless
Communication Channel

L
M S
QCIN | S8IT -l

| 1M +—a 4P
e — —
10y M} T}— 0) M} —

Fig. 1: Proposed general QFL setup.

Chehimi, M., & Saad, W. (2022, May). Quantum federated learning with quantum data. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 8617-8621). IEEE.
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Fig. 4: Evolution of the testing accuracy of different optimizers

over the training epochs.



Quantum Federated ML with

Algorithm 1 QFL-DP

Input: Examples {z1, ..
Parameters: Clients K, selected .J, local epochs T,
rounds R, learning rate 7);, noise scale o, group size L, gradi-
ent norm bound C.
Partition: From M examples, construct Dq,...,Dg
among K clients randomly, |D;| = N = M/K
Initialize: Quantum global model ©y € R™
1: for r € [R| do

* CL'M}, loss function ,C(H) — real-world

computation

X’s opt-out
scenario

2: Model distribution:
3: Make K identical copies of ©,. for local set
4: {®,1,...,P,.x} and send D, to client &k
5: Take random sample J from K clients
6: forje[J]do
7: fort € [T] do
8: DP client update:
9: Perform DP-SGD(N, L, n, 0, L, C) on
10: q),nj < E)rj 75 q)rj
11: end for
12: end for
13: Model aggregation:
14: ©,11 = averaging the parameters across
15: each model in {(ig Ho1
16: end for

Output: O and compute the overall privacy cost (e, §)
using a privacy accounting method.

Rofougaran, R., Yoo, S., Tseng, H. H., & Chen, S. Y. C. (2023). Federated Quantum Machine Learning with Differential Privacy. ICASSP

2024

Watkins, W. M., Chen, S. Y. C., & Yoo, S. (2023). Quantum machine learning with differential privacy. Scientific Reports, 13(1), 2453.
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test accuracy converging at approximately 0.98.



 Applications

e Quantum Recurrent Neural Network
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Quantum LSTM

: Recurrent |
Neural
+  Network '

Recurrent neural networks (RNN)
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Quantum LSTM

(Classical) Long short-term memory (LSTM)

(at time step t)
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Quantum LSTM
-
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Variational Quantum Circuits



predict

Quantum LSTM
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Chen, S. Y. C,, Yoo, S., & Fang, Y. L. L. (2022, May). Quantum long short-term
memory. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 8622-8626). IEEE.
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Federated QLSTM

y,; 41 Classical post-processing F Q d Q 14 S T :\/l

A nr=
framework ﬂﬂ: derated averaging
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parameters (0) parameters (60)
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Chehimi, M., Chen, S. Y. C., Saad, W., & Yoo, S. (2024). Federated quantum long short-term memory (FedQLSTM). Quantum Machine Intelligence, 6(2), 43.
46




Federated QLSTM

60'I N ISTM
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Chehimi, M., Chen, S. Y. C., Saad, W., & Yoo, S. (2024). Federated quantum long short-term memory (FedQLSTM). Quantum Machine Intelligence, 6(2), 43.
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 Applications

 Quantum Reinforcement Learning
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Quantum RL

Hybrid RL Agent

Output from Quantum Circuit

Deep RL algorithm

Update circuit parameters

S,

Quantum Circuit 0 Classical Computer

state |reward action

5¢ | 17 iy
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Quantum RL

Variational Quantum Circuits for Deep
Reinforcement Learning

SAMUEL YEN-CHI CHEN“12, CHAO-HAN HUCK YANG3, JUN QI'“3, (Member, IEEE),
PIN-YU CHEN?, (Member, IEEE), XIAOLI MA3, (Fellow, IEEE), AND HSI-SHENG GOAN""1:25

Quantum agents in the Gym:
a variational quantum algorithm for deep Q-learning

Andrea Skolik!'?, Sofiene Jerbi®, and Vedran Dunjko!

Parametrized Quantum Policies
for Reinforcement Learning

Sofiene Jerbi Casper Gyurik Simon C. Marshall
Institute for Theoretical Physics, LIACS, LIACS,
University of Innsbruck Leiden University Leiden University

sofiene. jerbi@uibk.ac.at

Hans J. Briegel Vedran Dunjko
Institute for Theoretical Physics, LIACS,
University of Innsbruck Leiden University
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A Survey on Quantum Reinforcement Learning

Nico Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel D. Scherer, Axel Plinge,
and Christopher Mutschler

Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Nuremberg, Germany
{firstname.lastname|daniel.scherer2}@iis.fraunhofer.de

An Introduction to Quantum Reinforcement
Learning (QRL)

Samuel Yen-Chi Chen
Wells Fargo
New York, NY, USA
yen-chi.chen@wellsfargo.com

Quantum Multi-Agent Reinforcement Learning via
Variational Quantum Circuit Design

"Won Joon Yun, 'Yunseok Kwak, "Jae Pyoung Kim, 3Hyunhee Cho,
Soyi Jung, °Jihong Park, and fJoongheon Kim
fSchool of Electrical Engineering, Korea University, Seoul, Republic of Korea
3School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
tSchool of Software, Hallym University, Chuncheon, Republic of Korea
°School of Information Technology, Deakin University, Geelong, Victoria, Australia



On Quantum Computer /

or Simulator
Variational Quantum Circuit

as a RL Agent
fr.n:m’: State or Observation

Quantum RL

On Classical Computer

Classical Optimization

Finite Difference

Gradient Descent

R(a1, B1,71)

Initial Param Selection

Adaptive Learning Rate

Nesterov Momentum

R(aa, B2, 72)

Output: Score for each Action

Circuit Parameters
Target Parameters

Reward & State

and other optimization techniques

Action
Channel Selection(Cognitive-Radio)

Maze (FrozenlLake)

)

FIGURE 4. Overview of variational quantum circuits for DRL. In this work,
we study the capability of variational quantum circuits in performing DRL
tasks. This DRL agent includes a quantum part and a classical part. Under
current limitations on the scale of quantum machines and the capabilities
of quantum simulations, we select frozen-lake and cognitive-radio
environments for the proof-of-principle study. The proposed framework is
rather general and is expected to solve complicated tasks when
larger-scale quantum machines are available.
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Quantum RL

 Environment with 16 states

« States numbered as 0-15

- Example:

e State 12: 1100 -> 1,1,0,0

» Rotation: (),

Result:

%

1) ® 1) ® |0) ® |0)

7T><b7;
7T><bz'
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Quantum Policy Gradient

( Hybrid RL agent J R State S (Task environment J A
f//—fi {//—- “
QPU |0 5, 0 s, 7] ( _

o = pxoby X ikl I - (a|S) Action a

% |0) —81' D D. ............ 81 71t -

3 710)- ] g — . {7)(0g)s,6€

QE) F MM K F N Vg log Tlg

: k|0)_:[3 S O e A J

o,

L

= \ ¢PU Policy gradient algorithm /

9 . .

- e.g., REINFORCE (see Alg. 1) . Reward 7 | Enyironment dynamics
\_ ) &8-an MDP y

Figure 1: Training parametrized quantum policies for reinforcement learning. We consider a
quantum-enhanced RL scenario where a hybrid quantum-classical agent learns by interacting with a
classical environment. For each state s it perceives, the agent samples its next action a from its policy
me(a|s) and perceives feedback on its behavior in the form of a reward r. For our hybrid agents,
the policy mg is specified by a PQC (see Def. 1) evaluated (along with the gradient Vg log mg) on
a quantum processing unit (QPU). The training of this policy is performed by a classical learning
algorithm, such as the REINFORCE algorithm (see Alg. 1), which uses sample interactions and
policy gradients to update the policy parameters 6.

Jerbi, S., Gyurik, C., Marshall, S., Briegel, H., & Dunjko, V. (2021). Parametrized
quantum policies for reinforcement learning. Advances in Neural Information
Processing Systems, 34, 28362-28375.
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Algorithm 1: REINFORCE with PQC policies and value-function baselines

Input: a PQC policy mg from Def. 1; a value-function approximator V.,
1 Initialize parameters 6 and w;
2 while True do

3
4

S

Generate N episodes {(so,@0,71,...,SH—1,8H-1,7H)}; following me;

for episode ¢ in batch do

Compute the returns G; ¢ < Zt, 1 ’y ,'rﬁzt,;

. Compute the gradients Vg log 7 (a; )|st ) using Lemma 1;

Fit {‘7“,(3?))}z L to the returns {G; + }

L
_LNHl @ G (o~ T DY)
Compute AQ N >, Z Veologme(a;’|s; ) (Git — V(s ') ) ;
1=1 t=

Update 0 < 0 + a A0,




Asynchronous QRL

- Multiple concurrent actors learning
the policy through parallelization.

« Executing multiple agents on
multiple instances of the
environments.

 Allowing the agents to encounter ﬂ ﬂ:@ %ﬁ ooo0 ﬂﬁ

diverse stajcgs at on-policy RL such Worker 1 Worker 2 Worker 3 Worker n
as actor-critic. X

Environment 1 Environment 2 Environment 3 Environment n

* No need of replay memory.

Chen, S. Y. C. (2023). Asynchronous training of quantum reinforcement
learning. Procedia Computer Science, 222, 321-330.



Asynchronous QRL

—— Quantum —— Quantum
—— Classical ——— Classical
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Fig. 7: Results: Quantum A3C in the MiniGrid-SimpleCrossing environment.
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Chen, S. Y. C. (2023). Asynchronous training of quantum reinforcement learning. Procedia Computer Science, 222, 321-330.



Quantum RL with QLSTM

» Motivation: Many real-world
environments are only partially
observable. The Al can only receive
partial information of the world.

Hybrid RL Agent

Output from
Quantum
————l i
RNN Deep Q-learning
algorithm
Update

 Challenges: Existing QRL

architectures do not have the Quantum ANN | S0 | iassical Gomputer
capabilities to memorize previous
time Steps. state | reward
St I"t
« Approach: Could quantum recurrent m
neural nets (QRN N) be h@lprl IN Chen, S. Y. C. (2023, June). Quantum deep recurrent
> reinforcement learning. In ICASSP 2023-2023 IEEE International
QRL - Conference on Acoustics, Speech and Signal Processing

- (ICASSP) (pp. 1-5). IEEE.



Quantum RL wit

Algorithm 1 Quantum deep recurrent ()-learning
Initialize replay memory D to capacity N
Initialize action-value function dressed QLSTM (@ with
random parameters 6
Initialize target dressed QLSTM @ with 8~ =6
for episode = 1,2,..., M do
Initialize the episode record buffer M
Initialise state s; and encode into the quantum state
Initialize h; and c; for the QLSTM
fort=1,2,...,T do
With probability € select a random action a.
otherwise select a; = max, Q*(s¢, a; 6) from the
output of the QLSTM
Execute action a; in emulator and observe reward
r+ and next state s;4 1
Store transition (s¢, at, ¢, S¢+1) in M
Sample random batch of trajectories 7 from D
( r; for terminal s,
r; +vmaxy Q(Sj4+1,a’;0)
for non-terminal s, 1
gradient descent step on

Average Score

Set Y = 4

Perform \ a

(y; — Q(s,05;67))°
Update the target network 6~ every S steps.
end for
Store episode record M to D
Update €
end for

Average Score

300 -

250 -

200 -

150 A

100 -

50 -

—-50 4

N

— 1 VQC layer
2 VQC layer

— 8 hidden neuron
- 16 hidden neuron

| number of parameters

300 -

250 -

200 -

150 A

100 -

50 -

_50 -

h QLSTM

Quantum models use smaller

QLSTM-1 | QLSTM-2 | LSTM-8 | LSTM-16
Full 150 634 2290
Partial | 146 626 2274

Table 1. Number of parameters.

Quantum models show higher
or more stable scores

200

400 600 800
Episode #

1000

Env: CartPole

Chen, S. Y. C. (2023, June). Quantum deep recurrent reinforcement
learning. In ICASSP 2023-2023 IEEE International Conference on
57 Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.



QLSTM without training?

* Motivation: Time-series modeling Is
an iImportant task in machine
learning. Recurrent neural network
(Qquantum or classical) is one of the
framework to model time-series.

- Challenges: Quantum RNN (e.qg.
QLSTM) training are computationally
expensive, requiring gradient
calculation of deep quantum circuit
models. (Backpropagation- FIG. 1. Reservoir computing (RC).
Through-Time (BPTT) is slow!)

Chen, S. Y. C. (2024, April). Efficient quantum recurrent reinforcement learning via quantum
reservoir computing. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 13186-13190). IEEE.



» Approach: Adopt the classical idea of
reservoir computing in the quantum
regime: treating the quantum RNN as
a reservoir. (The quantum parameters
are randomly initialized and fixed.
Only the final classical layers are

. [
trained.)

* Results: Previous works show that
the QRNN within the reservoir
computing framework can reach
comparable performance to fully
trained ones.

VQCs are NOT trained

Chen, S. Y. C. (2024, April). Efficient quantum recurrent reinforcement learning via quantum
reservoir computing. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 13186-13190). IEEE.
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Chen, S. Y. C. (2024, April). Efficient quantum recurrent reinforcement ]
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Don’t want ANY quantum
RNN?



Classical FWP

Fast Programmer
(Updated by Slow Programmer)

Slow Programmer
(Trained by Gradient Descent)

Schmidhuber, J. (1992). Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1), 131-1309.



Learning to Program a VQC

» Classical NN generates circuit parameter
updates for each “layer” and “qubit”.

» Use tensor product to generate
parameter updates for all parameterized
gates.

[Li] X [QJ] — [Mij]
— [Li X QJ]

Ly X QL X Oy-L; XQ,
Ly X Q1Ly, X Qy---Ly X Q,

LiXx LX) Ly X0,

03

— LAVER: [L ]
O § — (L] ® Q)]




Learnlng to Program a VQC

0) '

0) .
, onFm1wwllmw
0)

Quantum Circuits Parameters
updated by classical NN

|0)
Data encoding circuit to 0) T R/(@)
transform classical data into a |0) D R
quantum state 10) P R,(ay)
10) P R
0) > R (o)
|0) D R @)

|0) E

>
)

arXiv:2402.17760, [JCNN 2024
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Epoch 1

Epoch 15

Epoch 30

Epoch 100

Quantum FWP for damped SHM

RESULTS: TIME-SERIES MODELING - DAMPED SHM

QLSTM [30] QFWP
Epoch 1 1.66 x 10~%/1.35 x 10=% | 3.33 x 10~1/3.26 x 10—*2
Epoch 15 | 2.89 x 10~2/5.53 x 10=° | 7.21 x 1072/1.65 x 10— 2
Epoch 30 | 9.06 x 1073/3.41 x 10=* | 5.96 x 1072/1.34 x 10?2
Epoch 100 | 2.86 x 1073/1.94 x 10—* | 1.09 x 10—2/2.70 x 103
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RESULTS: TIME-SERIES MODELING - BESSEL FUNCTION Jo

QLSTM [30]

QFWP

Epoch 1

1.04 x 10—1/1.66 x 10— 2
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2.30 x 10—4/5.35 x 10—°

1.22 x 10~2/4.56 x 10—3
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Learning to Program a VQC for RL

e Slow programmer:

e Encoder

O_>§ LAYER: [ L]
» NN for quantum layers L. : — [L] ® [O]
. _»% QUBIT: [ Q] modify parameters
O+, =09+ L;x O,
» NN for qubit index Qj nput

* Fast programmer:

logits

. 8-qubit VQC

e L=2o0rL =4VQC layers
66 arXiv:2402.17760, [IJCNN 2024



Learning to Program a VQC for RL

e QLSTM baseline

. 8-qubit VQC

e 4 qubits for input

* 4 qubits for hidden dimension

TABLE VI
NUMBER OF PARAMETERS IN QFWP AND QLSTM MODELS IN QRL
e Classical NN for dimensional EXFERIMENTS.
reduction, actor and critic outputs. Classical | Quantum
QLSTM-2 VQC Layer 627 240
QLSTM-4 VQC Layer 627 480
QLSTM-6 VQC Layer 627 720
QLSTM-8 VQC Layer 627 960
QLSTM-10 VQC Layer 627 1200
_ Quantum FWP-2 VQC Layer | 2521 16
arXiv:2402.17760, [JCNN 2024 Quantum FWP-4 VQC Layer | 2539 32




Learning to Program a VQC for RL

- Observation: 147-dimensional vector.
: . . (a) (b)

« Action: There are six actions: turn left,
turn right, move forward, pick up an
object, drop the object being carried
and toggle. Only the first three of them
are having actual effects in this case.
The agent is expected to learn this fact.

* Reward: The agent receives a reward

of 1 upon reaching the goal. A penalty
IS subtracted from this reward based on

the formula

68 arXiv:2402.17760, [JCNN 2024



Learning to Program a VQC for RL

Average Score
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Average Score
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 Applications

 Quantum Natural Language Processing

70



BERT with Quantum Temporal Convolution

Input: Text (e.g., Sentence)

" Classical API A

| BERT Embeddings |

Learning

9 P
Quantum API

Data Pipeline
> o

Gradient
( ——

Quantum Convolutional Circuit

[ Output: Prediction Category ]

Yang, C. H. H., Qi, J., Chen, S. Y. C., Tsao, Y., & Chen, P. Y. (2022). When BERT Meets Quantum Temporal Convolution

(a) pre-trained model

4 ™

Input —

. J

(b) quantum temporal convolution (QTC)

(7

\&

QTC

\

[

/

n filter(s)

.

Global
Max Pooling

\

J

[

.

Dense

\

J

Learning for Text Classification in Heterogeneous Computing. arXiv preprint arXiv:2203.03550. ICASSP 2022
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BERT with Quantum Temporal Cone Learning

Table 3: Average accuracy on intent classification for Snips with a
set of different number (n) of convolutional filter and kernel size (k).

Embedding word2vec BERT

(n,K) 14 @2 @3 ¢4 A4 @2 @&3) €4
TCN 82.02 8337 8290 83.15 9548 9523 95.12 95.27
QTC 83.32 8394 83.61 84.64 9641 9642 96.62 96.44

Table 4: Average accuracy on intent classification for ATIS; with a
set of different number (n) of convolutional filter and kernel size (k).

Embedding word2vec BERT

(n,K) 14 @2 @3 @4 A4 @2 @3) @24
TCN 80.09 80.22 8091 8234 95.18 9503 9495 95.23
QTC 8142 8249 8382 83.95 96.69 9692 96.32 96.98

Yang, C. H. H., Qi, J., Chen, S. Y. C., Tsao, Y., & Chen, P. Y. (2022). When BERT Meets Quantum Temporal Convolution
Learning for Text Classification in Heterogeneous Computing. arXiv preprint arXiv:2203.03550. ICASSP 2022

(2



Quantum Language Models

——J ——

4 'NIQS Servers / Cloud API y

’— —
”

/[Quantum Language Model] F\ \
. !
Text Data ' [ Word Embedding ]E -

\
D = {D1l D2I soey Dn}

[/
[MJ ...... [J

Local Machine M;: downstream task model

(a) Quantum Circuit [28] (b) Q-LSTM

Fig. 2: Model Architecture

| e Seas PLM | LSTM Q-LSTM (4q)
Fig. 1: De.centr.ahzed Quantum Language Model Pipeline. accuracy 0.928 0.934
Text data 1s trained on language model on NISQ servers, the ohted f1 0.93 0.93
word embeddings are transferred to downstream models M weighte 2 2

Table 2: SA Performance on Multilingual Twitter Dataset

Li, S. S., Zhang, X., Zhou, S., Shu, H., Liang, R., Liu, H., & Garcia, L. P. (2023, June). PQLM-Multilingual Decentralized Portable
Quantum Language Model. In ICASSP 2023

73



Quantum Speech Recognition

] _ [:]: QCNNs (2) Extra Mel-Spectrogram: Ui
- Vertical federated learning (3) NISQ Servers ? '
or Cloud API F :

° SpeeCh IﬂpUt are fIrSt processed IntO [QuantumConvolutionLayer }

Mel spectrogram and then sent into a

. ncoded Features: Fi
quantum layer for encoding (on the (1) Upload Inpu — SN
CIOU d ). Speech: Xi (b) M(())fiil [ Spoken Term Recognition J——» “forward”’

%

"W [ Attention"Recurrent “J
| : L Neural Networks Model
 The encoded features are used to

train the acoustic model (onuser : e L
devices). | ~

« Can reduce model parameter
Encoding | Quantum | Decoding
leakage. |, Circuit |,

Yang, C. H. H., Qi, J., Chen, S. Y. C., Chen, P. Y., Siniscalchi, S. M., Ma, X., & Lee, C. H. (2021, June). L— — . —
Decentralizing feature extraction with quantum convolutional neural network for automatic X e(UX) Ox Q('x) fx d(Ox)
speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and 74

Signal Processing (ICASSP) (pp. 6523-6527). IEEE.




 Applications

 Quantum Neural Networks for Model Compression

lgs



e Challenges of training a QNN:
» Challenges of data encoding

* Quantum hardware requirement during inference

* |s there a way of leveraging the best part from both the quantum and
classical NN?

/0



Hilbert space is a BIG place!

 Instead of preparing M initial parameters, we attempt to generate these M parameters using a
QNN U( ¢ ) with N = [log, M | qubits.

+ The size of the Hilbert space is 2V = 21°&M| > A1 such that each probability | (i | U(z)) \2 of
a computational basis |i) could correspond to one of the parameters in 0.

» Assuming the QNN has a polynomial depth of layers, the number of parameters is polylog(M).

N-qubit quantum neural
network with parameters ¢

A - ?
(i), [i| UCp)Y|*) —> 6,

Required qubits : — _

N = |log, M| U(¢)

e
| Vie {1.2,....M)
/7«

Liu, C. Y., Kuo, E. J., Lin, C. H. A,, Young, J. G., Chang, Y. J., Hsieh, M. H., & Goan, H. S.
# of parameters: (2024). Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the
77 Model Compression Perspective. arXiv preprint arXiv:2405.11304.
polylog(M)



 “Generate” the classical NN parameters by QNN

e The “trained” result Is a classical NN

Evaluate Gradients & Update Parameters ¢, }7

Classical neural network

Mapping model with 5 data A
QNN parameters y

Generate 5 *

—

U(¢)

, Evaluate
—> Cost
9,29, Function

|

%..

(2024). Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the

Liu, C. Y, Kuo, E. J., Lin, C. H. A,, Young, J. G., Chang, Y. J., Hsieh, M. H., & Goan, H. S.
. | . . . ( Prediction )
Model Compression Perspective. arXiv preprint arXiv:2405.11304. 78

_ J




Evaluate Gradients & Update Parameters gb , }7

Classical neural network

. . ( )
Mapping model with data
QNN parameters y

Generate 5 *
HAA
— Evaluate
[/ ( ¢ ) N —»  Cost
z 9%, Function
1A

( Prediction )

\_ W,

Mapping model is required to transform (rescale) the expectation values.

Liu, C. Y, Kuo, E. J., Lin, C. H. A,, Young, J. G., Chang, Y. J., Hsieh, M. H., & Goan, H. S.
(2024). Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the
79 Model Compression Perspective. arXiv preprint arXiv:2405.11304.



F Local model 1 W

Global model Local model 2 W
) om “—»E | - Local model N a
—> © @» — —> , B
o > >
| > Sending ‘ % > §§§ 1@]} |
parameters —» NE= |
\- 7,

\_ Local updates )

Update global model Parameter aggregation

Liu, C. Y., & Chen, S. Y. C. (2024). Federated quantum-train with batched parameter
generation. arXiv preprint arXiv:2409.02763.
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Use less training parameters by QT

 VGG-like CNN with 285226
parameters

« QT-BG2000 with 78832 parameters
 QT-BG1000 with 45864 parameters

« QT-BG500 with 29396 parameters

srpane 1 N B - 5 R
automobile EEﬂH‘
i Sl WS ¥
" ShatnatEan
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IFAR-1 t ol Py e ey
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truck
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Number of Model Parameters

285,226
78,832
45,864
29,396
Original QT QT QT
Model mip_out mip_out mip_out
2000 1000 500

Liu, C. Y., & Chen, S. Y. C. (2024). Federated quantum-train with batched parameter
generation. arXiv preprint arXiv:2409.02763.



Quantum-Train closing the gap between training acc and testing acc,
the so called generalization error! (arXiv:2405.11304)

Number of clients = 4 Number of clients = 4
100 - B train, mlp_out = Classical train, mip_out = 1000 67.5 7 Bl test, mlp_out = Classical test, mip_out = 1000
@ train, mlp_out = 2000 train, mlp_out = 500 65.0 - i test, mlp_out = 2000 test, mip_out = 500
~ 90- —~ 62.5 -
S &
> 80 - > 60.0 -
O O
= = 57.5 -
55.0 -
60 -
52.5 -
50 - 50.0 -
1 2 3 4 5 1 2 3 4 5
Local Epochs Local Epochs
80 Liu, C. Y., & Chen, S. Y. C. (2024). Federated quantum-train with batched parameter

generation. arXiv preprint arXiv:2409.02763.
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Quantum Circuit Design Challenges

Given a problem, we want to build something like this;:

0)

|O> U(x) I V()



Quantum Circuit Design Challenges

What should be those components?

U(x)

How to design the “encoding circuit”?
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Quantum Circuit Design Challenges

What should be those components?

V(6)

How to design the “variational circuit”?
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Quantum Circuit Design Challenges

* There are many options for both encoding circuit and variational circuit.

- Different initial circuit, entanglement structures, rotation gates (Ry,Ry,

R7)

Ry Ry Ry = i S D
Ry I Ry Ry I Ry Ry - N, /L D /L
Ry ? I Ry Ry I ? Tl W/L N, /L
Ry I Ry Ry I Ry Ry | = NP /,L D /L
m I W I .1{3,- — N e
[ Read, 81.2) B {ReL A | +—P
- R(a%,ﬁémé)él —[Re}, B3 P
— | R(ad, 85,4) O —{ R}, B.%) D
| Rk, 855 D Rl Brd) D

Image credit: PennylLane.al



Quantum Architecture Search

» Evolutionary Optimization

* Reinforcement Learning

 Differentiable Search



Evolutionary QAS

Probability Distribution of Operations

* Evolutionary Optimization = Pty .

Variational PQC (x1)
- Data-encoding PQC (x2)
- Entanglement (x3)

x1(0) x2(d, A) X3 x0 (1Y) 0.6 -
M- — N [— 1 - I — 1 o
|0>0 1 Rx(HO,O) Ry(HO,l) RZ(HO,Z) i i Ry (Aodp) i :_I ’—: | /74 | = 04
| | | | | | 2
10); —+H Rx(61,0) IRy (61,1) - Rz(01,2) H H Rx(A1d1) H : I : i A
| | | | || x1(¥) | 0.2
| | '
|0>2 — Rx(92,0) Ry(92,1) Rz(gz,z) i i Rx(ﬂzdz) | | I | ! /74 |
| | | | | |
| |
0)3 —H Rx(03,0) — Ry(03,1) — Rz(63,2) H H Ry (A3ds3) o | A 0.0
L — _— _
e - L= L - - — — — _ 0 5 10 15 20 25
Position index in architectures
e x;: Variational PQC - A circuit with single-qubit rotations
Ry, Ry, R, performed on each qubit, with the rotation angles CartPole-v1 MountainCar-v0
as trainable parameters. 500 | —al
e x3: Data-encoding PQC - A circuit with single-qubit rotations
-80

Ry performed on each qubit, with the rotation angles is the
input scaled by trainable parameters.

e x3: Entanglement - A circuit that performs circular entangle-
ment to all the qubits by applying one or multiple controlled-
Z gates.

e x(: Measurement - A Variational PQC followed by measure-
ment.

400 -

—100 A
300 A

200 A

!
L

Average collected rewards
| =
Average collected rewards
|
[
N
o
B

100 A

I
[
(*)}
o

m - 5OftmMax-PQC | - softmax-PQC
Ding, L., & Spector, L. (2022, July). Evolutionary quantum architecture L EQAS-PQC (ours) e / EQAS-PQC (ours)

search for parametrized quantum circuits. In Proceedings of the Genetic 0 100 200 300 400 500 0 200 400 600 800 1000
. . . Epsiod Epsiod
and Evolutionary Computation Conference Companion (pp. 2190-2195). PRIoEE psiode




RL for Quantum Architecture Search

Quantum Computer

l}l
- Reward:
‘ ’ (a) -0.01 for each step.
(b) +0.99 when reaching
Action: fidelity > 0.99.
Place a
quantum gate
on a wire.
RL Agent Observation:

Pauli-X,Y,Z expectation

values.
E| |§| |§| E| Action space for QAS:

G = U {Ui (n/4),Xi, Yi, Zi, Hi, CNOT; (141) (mod2) }
i=1

Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum architecture search via
deep reinforcement learning. arXiv preprint arXiv:2104.07715.

90



Score

Score

1.2

RL for Quantum Architecture Search

raw scores average scores

- Raw Score 1 s |- Solved
—— Average Score

Average Score
1 1 1

1000

2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Episode # Episode #

(a) A2C for noise-free two-qubit system.

raw scores average scores
—— Raw Score e 1 It Solved
—— Average Score

0

o

|9}

0

ch‘—

©

: 0)

> |

<

Bell state
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Episode # Episode #

(b) PPO for noise-free two-qubit system.

Kuo, E. J., Fang, Y. L. L., & Chen, S. Y. C. (2021). Quantum architecture search via
deep reinforcement learning. arXiv preprint arXiv:2104.07715.
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raw scores average scores
1.25 .
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<
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(a) A2C for noise-free three-qubit system.
raw scores average scores
1.25 A .
— Raw Score | (e Solved
—— Average Score
1.00 -
0.75 A
()]
0.50 o
(% [
g 0)HH
0.25 ©-
< 0
: ) I
0.00 1
-0.25
GHZ state
-0.50
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
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(b) PPO for noise-free three-qubit system.



RL for Quantum Architecture Search

Environment

Model Training
and Evaluation

Variational Quantum Circuit

Action: RL Agent Observation:
Place a quantum Current Circuit

gate on a wire. Q Structure.

Q Reward:

Based on the model
performance.

Dai, X., Wei, T. C., Yoo, S., & Chen, S. Y. C. (2024). Quantum Machine Learning
Architecture Search via Deep Reinforcement Learning. arXiv preprint arXiv:2407.20147.
IEEE QCE 2024 92



QRL for QAS

Hybrid RL Agent

Output from Quantum Circuit
V(0) Deep RL algorithm
Update circuit parameters

0

Quantum Circuit Classical Computer

Quantum Computer

state | reward _H_ action

Chen, S. Y. C. (2023, August). Quantum reinforcement learning for quantum architecture search. In Proceedings of the 2023 International Workshop on Quantum Classical Cooperative (pp. 17-20).
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QRL for QAS

Qiskit simulator with OpenAl Gym wrapper

State: Pauli-X, Y, Z expectation values for ‘O>
each qubit. (3n-dimensional vector where n
is the number of qubits) |0)

Bell state
GHZ state

Action: single qubit gates and CNOT gate

‘Reward: for every step, the environment will
feedback a —0.01 reward to encourage the Action space for QAS:
agent to use smaller number of steps. If n
the fidelity of quantum states reach a certain G = U {Us (7/4),Xi, Vi, Zi, Hi, CNOT; (111) (mod2) }
threshold (e.g. 0.95), the reward will be i—1

(fidelity — 0.01) and the episode terminates.

Chen, S. Y. C. (2023, August). Quantum reinforcement learning for quantum architecture search. In Proceedings of the 2023 International Workshop on Quantum Classical Cooperative (pp. 17-20).
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QRL for QAS

e With quantum A3C
training algorithms, the
hybrid quantum-classical
RL agent can find the
circuit for Bell state (two-
qubit) and GHZ
state (three-qubit)

 The three-qubit case
requires more training
episodes.

Chen, S. Y. C. (2023, August). Quantum reinforcement learning for quantum architecture
search. In Proceedings of the 2023 International Workshop on Quantum Classical
Cooperative (pp. 17-20).

Bell state

GHZ state
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Challenges of Evo or RL QAS

Less sample-efficient, requiring a large number of interactions or iterations
to converge to a good architecture.

May converge slower because they explore the search space in a more
trial-and-error manner.

More hyperparameters (e.g., mutation rates, crossover probabilities,
exploration/exploitation ratios)

Scalability issues in high-dimensional search spaces (more qubits, deeper
quantum circuits).
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Differentiable Quantum Architecture Search

Differentiable Neural Architecture Search:

() 0 0 | 0
4 I\ N\
y
| ? 1 | 1
i ! l \
'R p
2 2% 2
\

?
\AY 1/ M L

3 3 =T E

(2,7)
5(Za]) (m) — Z eXp(ao 27/ ) 0($)
0€0 2uorc0 XP(A ™) Ref: https://arxiv.org/pdf/1806.09055



https://arxiv.org/pdf/1806.09055

Differentiable Quantum Architecture Search

» Goal: Construct quantum circuit 6.

X Wy
R(63)
e Quantum circuit € has &', &5, =+, &,
sub-components.
« Each &', is associated with a < W
corresponding set of allowable circuit input _2>@

choices 3.

» | AB.|denotes the number of permissible
circuit choices for each sub-component

L.

» Number of possible realization 6

N=|%B|X|B,| X X|3A,]|

S

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum
Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024

:



Differentiable Quantum Architecture Search

« Structural weights: w;

« Each circuit realization %j is

associlated with the trainable
parameter (9]

input

S

N
Ensemble function fo, = Z wjfggj
J=1

» Loss: ZL(f2)

. Gradient: ijff(fcg)

S

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum
Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024

:



Differentiable Quantum Architecture Search

—
_ R (x,) R,(x,)

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum ; , X ; — 6

Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024



Differentiable Quantum Architecture Search

Connect multiple blocks together!

If there are NV possible circuit realization, then the number of total possible paths: NM

Circuit Block-1 Circuit Block-M

Circuit-1 | X Wll ;\Ler:‘g::,toe:‘ X W{w
l circuits 1
Circuit-2 | X wz1 XX X wé” »@

M

1
Circuit-N | X Wy




DIiffQAS in Quantum RL

Hybrid QRL Agent
Circuit Block-1 Circuit Block-M

Deep RL algorithm

. process output

] from quantum
—p 0 ¢ ¢ =l 2. update circuit

® ®
° weighted ° parameters
® ®

3. update structural
weights

sum from

o circuits o

Classical Computer

state | reward action

S¢| 1t i,

Chen, S. Y. C. (2024). Differentiable Quantum Architecture
Search in Asynchronous Quantum Reinforcement
Learning. arXiv preprint arXiv:2407.18202. IEEE QCE

2024



DiffQAS in Asynchronous QRL

e Circuit Parameters
e Structural Weights

Global Parameter Storage

Circuit Block-1 Circuit Block-M Circuit Block-1 Circuit Block-M Circuit Block-1 Circuit Block-M

Worker 1

Worker 2 Worker W

Environment 1 Environment 2 Environment W

Chen, S. Y. C. (2024). Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning. arXiv preprint arXiv:2407.18202. IEEE QCE 2024
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earning to Measure

Quantum Computer

|O> I Quantum measurement outcomes
) | U® I w(®) |

0) -

L

Updated quantum circuit parameters ® Classical Computer

Updated observable parameters /1 |
Chen, S. Y. C., Tseng, H. H., Lin, H. Y., & Yoo, S. (2025).

Learning to Measure Quantum Neural Networks. arXiv preprint
110 arXiv:2501.05663.
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earning to Measure

—— VQC - Mean Loss
VQC Learnable Observable - Mean Loss
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©
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Epoch
VCTK Speaker Recognition Task

Chen, S. Y. C., Tseng, H. H., Lin, H. Y., & Yoo, S. (2025).

Learning to Measure Quantum Neural Networks. arXiv preprint

arXiv:2501.05663.



e Challenges in Quantum Machine Learning

112



Challenges in Quantum Machine Learning

Number of qubits

Qubit decoherence

(Gate noise

* Vanishing gradients

Limited model sizes

113

Near-zero
temperature

Difficult control

Data transfer
between quantum
and classical
computers




e Conclusion and Outlook

114



Conclusion and Outlook

* Quantum Machine Learning models largely depend on the hybrid
quantum-classical framework.

* Variational Quantum Circuits (VQC) a.k.a Parameterized Quantum
Circuits (PQC) are the building blocks of QML.

 Quantum and components can be connected as a DAG and
backpropogation can be applied to trained the whole model in an end-
to-end manner.
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Conclusion and Outlook

Quantum Neural Networks (QNN) can be used to build models such as
quantum convolutional neural networks (QCNN), quantum long-short-
term memory (QLSTM) and other hybrid quantum-classical models.

Quantum Neural Networks (QNN) can be used to generate parameters
for classical neural networks, reducing a large amount of trainable
parameters.

Quantum Neural Networks (QNN) can learn value functions and policy
functions in reinforcement learning (RL).

Evolutionary, RL and differentiable search can be used to find good QML
architectures or good quantum measurement methods.
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Thank You!

Feel free to reach out:
ycchen1989@ieee.org
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