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Introduction

B In Noisy Intermediate-Scale Quantum (NISQ) era, the
quantum machine learning (QML) approach galned
attention

B However, there are some problems that hinders usability of
QML such as Barren Plateau and decreased trainability

B Some researches increased trainability by reducm}g effective
parameter space of the circuit or using local cost function

Example of Barren Plateau, image credit from [1]
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Method - procedure

B Variational Quantum Algorithm
L Update parameter of the quantum circuit using classical optimizer
L Update parameter in every iteration

Classical Optimizer

r 0 = 041

Parameterized

[Y) —— Quantum Circuit —— (P(0,)|H|p(6,))
LACH)
State Quantum
preparation Circuit
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Method - Gate Activation Strategy
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Method - procedure

B Gate activation strategy

L Select gate to activate per iteration based on following strategy

L For Magnitude-based activation strategy, it requires warm-up

iteration for quantum circuit to gain information about the
problem

- Hyperparameters

- Warm-up iteration: # of iterations for full-quantum circuit
training in Magnitude-based strategy

L Selection rate: rate of gates being selected

Carnegie
2025. 3. 4. 6 Mellon gTL

University seauessrais-xLas



B Variational Quantum Eigensolver
L Find ground state energy of Molecule Hamiltonian

L Molecule Hamiltonian can be simplified as combination with
coefficient and Pauli operations

H = ZCJ X Ugj)

J

Co HF LiH Lio OH~
Charge 0 0 0 0 -1
Active Electrons 8 8 2 2 8
Bond Length (A) 0.5,0.7,09,1.1,1.22,1.3,1.5,1.7,19,2.1,2.3, 2.5
Active Orbitals 5

L Use Pennylane package to obtain Molecule Hamiltonian with
various bond length
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Experiments — Hyperparameters

B VQE training specification

Qubits 10
# of Layers 7
# of Parameters 210
Train lteration 2000
Optimizer Adam
Learning Rate 0.001

B Gate activation specification

Warm-up iteration 0, 100, 200, 500
Selection rate (%) 10, 50, 90

B Algorithms
L Random (RA), Gate Random (Gate), Magnitude-based (Mag)
L Without gate activation (None)

B Performance metric: gap between exact energy and
expectation
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B Performance relative to Strategy
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B Trainability relative to Selection rate

0.8 0.8
_ 06 _ 06 -
| 0.4 | 0.4 |
8 8 8
w w I w
> 0.21"___. None =S 0.2 - None il LNl s S
2 ~— RA-10.0 2 —— Gate-10.0 TR 2
0.01 — _ RA-50.0 0.01 —— Gate-50.0
—— RA-90.0 —— Gate-90.0 Mag-90.0
-0.2 -0.2 -0.25 - :
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Iterations Iterations Iterations
(a) Fully random activation (b) Gate random activation (c) Magnitude-based activation

Carnegie @&
2025. 3. 4, 10 Mellon

University seaess s

=]
-



B Performance relative to warm-up iteration
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Using different warm-up iteration results in different performance,

but it still shows better performance than without gate activation
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Conclusion and Future Work

B Gate activation can increase the trainability of the
quantum circuit and therefore can achieve better
performance than whole circuit

B Future work

L Adaptive gate selection: instead of fixed number of gates being

activated, use adaptive gate selection that considers optimization
landscape or training progress

L New metric for selecting gate: simple magnitude-based shows
better performance than random, but there can be a better
metric/rule for gate selection
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Thank You! Questions?

jeiheec@gmail.com



