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Quantum Echo-state Networks (QESNs)

• Classical ESNs are lightweight sparsely allocated 
RNNs that are used for predicting dynamical systems.

• QESNs are their quantum counterpart and operate 
using qubits instead of “neurons”.

• Reservoir networks are used in time-series prediction, 
classification, and the predictions of chaotic PDEs and 
ODEs.

• Importantly, QESNs must also have memory and 
nonlinearity, which are both intrinsic properties of all 
RNNs.

• Implementing this sort of architecture on hardware for 
long time-series prediction has not been demonstrated 
due to noise and limitations of noisy-intermediate 
scale quantum (NISQ) coherence times.

Image: https://en.wikipedia.org/wiki/Echo_state_network
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Main Contributions of the Paper:

1. We introduce a scalable QESN algorithm that implements the two necessary components of memory
and nonlinearity for quantum recurrent neural networks (QRNNs) on a quantum computer, which we 
verify with empirical analysis of simple input signals in numerical simulation.

2. We introduce and benchmark tunable hyperparameters such as sparsity and repeatable data re-
uploading blocks which allow for more efficient circuits and tunable nonlinearity.

3. We demonstrate the capability of our QESN to accurately predict the chaotic Lorenz System set of 
ODEs using limited training information in numerical simulations.

4. We implement this design on IBM noisy-intermediate scale quantum (NISQ) hardware and conduct the 
first ever proof-of-concept for continuous long time-series prediction on IBM gate-based quantum 
computers with a circuit that ran 100 times longer than the median 𝜏1 𝑎𝑛𝑑 𝜏2 time of the IBM 
Marrakesh QPU.
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Circuit Design
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Secret?

Circuit is guaranteed to create weak-
entanglement between memory and 

readout, allowing persistent memory and 
continual time-series prediction!

In this case, the Reset operation is 
guaranteed to destroy information and bias 
us towards a fixed point, helping to create 

both the “echo-state property” and fading 
memory

All weights generated randomly at “compile” time



Response Analysis: Sparsity & Memory

Fewer Gates

No 
Entanglement

No 
Entanglement

Input Signal

Non-zero rise-time 
indicates memory

Top Row: Expectation Values
Bottom Row: Probability Distribution (64 

signals)

Instant response means we 
have no memory

Sparsity means fewer gates, lower 
depth, and less errors



Response Analysis: Sparsity & Expressivity

Fewer Gates

No 
Entanglement

No 
Entanglement

Input Signal

Top Row: Expectation Values
Bottom Row: Probability Distribution (64 signals)

We observe rich features even 
when sparsity is introduced to the 
circuit!

Simplistic features when 
entanglement is not present!

Sparsity means fewer gates, lower 
depth, and less errors



Results: Lorenz System (16 Qubits) (Test Set)

Aer Simulator Train: 6900 data points Test: 3000 data points   Washout: 300 Shots: 60,000
Repeated Blocks: 3 Sparsity: ~50% RMSE (test): .0237



Results: Lorenz 
System 
(Simulator)

~4 days to compute 
on DGX-A100 with 
all GPUs



IBM Quantum Implementation

• Implementing quantum circuits is generally very difficult due to the short coherence times of qubits and 
intrinsic errors present in quantum computers.

• Our circuit design implements a “measure-and-reset” paradigm which allows for the creation of persistent 
memory in QCs and the ability to run a circuit indefinitely without intermediate halts [1][2][3]

• This hasn’t been empirically validated on hardware because of many issues with excess measurement data 
on the IBM backend and noise.

• We demonstrate that our circuit can run for a timespan of ~48,000 𝜇𝑠 and successfully predict the Lorenz 
System. This is due to the guaranteed weak entanglement the QESN circuit creates, as well as the 
“measure-and-reset” paradigm.

• We collect feature signals for a time length of 2000 data points on IBM hardware, greatly exceeding the 
previous bests of ~30 data points in circuits that only ran for ~200 𝜇𝑠 [1]

[1] Hu, F., Khan, S.A., Bronn, N.T., Angelatos, G., Rowlands, G.E., Ribeill, G.J., Türeci, H.E.: Overcoming the coherence timebarrier in quantum machine learning on temporal data. Nature Communications 15(1), 
7491 (2024)
[2] Yasuda, T., Suzuki, Y., Kubota, T., Nakajima, K., Gao, Q., Zhang, W., Shimono, S., Nurdin, H.I., Yamamoto, N.: Quantum reservoir computing with repeated measurements on superconducting devices (2023)
[3] Chen, J., Nurdin, H.I., Yamamoto, N.: Temporal information processing on noisy quantum computers. Phys. Rev. Appl. 14, 024065 (2020)



Results: IBM Marrakesh QPU (12 Qubits) (Test Set)

IBM QPU Train: 1200 data points Test: 800 data points   Washout: 15   Shots: 60,000 Repeated Blocks: 3
Circuit execution time per shot > 48,000 𝜇𝑠 Median 𝝉% = 213.92 𝜇𝑠 & 𝝉& = 119.57 𝜇𝑠

Sparsity: ~50% RMSE (test): .0922 

Over 100 times longer than the median 𝜏% and 𝜏& time! 



• We designed and tested a Quantum Echo-state network (QESN) and proved empirically its capabilities at 
long-time series prediction using the chaotic Lorenz system.

• We show that our circuit has the necessary properties of memory and nonlinearity, two important 
components of classical RNNs that warranted further investigation in quantum circuits.

• We introduce tunable hyperparameters such as sparsity and repeatable data re-uploading blocks which 
allow for reduced circuit depth without sacrificing performance or output feature “richness”, and 
controllable amounts of nonlinearity, respectively.

• We ran the circuit on IBM hardware demonstrating the first ever gate-based hardware validation of the 
“measure-and-reset” paradigm successfully executing for long-time series prediction with an experiment 
that ran over 𝟏𝟎𝟎𝒙 longer than the median 𝝉𝟏 = 𝟐𝟏𝟑. 𝟗𝟐 𝝁𝒔 𝒂𝒏𝒅 𝝉𝟐 = 𝟏𝟏𝟗. 𝟓𝟕 𝝁𝒔 of the IBM 
Marrakesh QPU maintaining coherence and memory for the entire 2000 data point train and test set of the 
Lorenz System.

Conclusion



Questions?
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