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Quantum Echo-state Networks (QESNSs)
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Classical ESNs are lightweight sparsely allocated
RNNs that are used for predicting dynamical systems.

QESNS are their quantum counterpart and operate
using qubits instead of “neurons”.

Reservoir networks are used in time-series prediction,

classification, and the predictions of chaotic PDEs and
ODEs.

Importantly, QESNs must also have memory and
nonlinearity, which are both intrinsic properties of all
RNN:E.

Implementing this sort of architecture on hardware for
long time-series prediction has not been demonstrated
due to noise and limitations of noisy-intermediate
scale quantum (NISQ) coherence times.

Image: https://en.wikipedia.org/wiki/Echo_state_network
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Main Contributions of the Paper:

1.  We introduce a scalable QESN algorithm that implements the two necessary components of memory
and nonlinearity for quantum recurrent neural networks (QRNNs) on a quantum computer, which we
verify with empirical analysis of simple input signals in numerical simulation.

2. We introduce and benchmark tunable hyperparameters such as sparsity and repeatable data re-
uploading blocks which allow for more efficient circuits and tunable nonlinearity.

3. We demonstrate the capability of our QESN to accurately predict the chaotic Lorenz System set of
ODE:s using limited training information in numerical simulations.

4.  We implement this design on IBM noisy-intermediate scale quantum (NISQ) hardware and conduct the
first ever proof-of-concept for continuous long time-series prediction on IBM gate-based quantum

computers with a circuit that ran 100 times longer than the median 71 and t2 time of the IBM
Marrakesh QPU.




QESN Pipeline & Algorithm
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Circuit Design

Circuit is guaranteed to create weak-
entanglement between memory and
readout, allowing persistent memory and

continual time-series prediction!
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Response Analysis: Sparsity & Memory
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Figure 5: Step signal processing by the QESN circuit, with a focus on the rise-time and memory introduced by varying the
entanglement and sparsity configurations. Sparsity means fewer gates, lower
Fewer Gates< depth, and less errors
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Response Analysis: Sparsity & Expressivity

Sinusoid Signal Response Analysis
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Figure 4: Response of the QESN circuit to a sinusoid input signal across different configurations, highlighting the richness of
features with varying levels of sparsity and entanglement. Sparsity means fewer gates, lower

Fewer Gates depth, and less errors
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Results: Lorenz System (16 Qubits) (Test Set)
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Aer Simulator Train: 6900 data points
Repeated Blocks: 3

Test: 3000 data points Washout: 300 Shots: 60,000
Sparsity: ~50%  RMSE (test): .0237




Qubits Expectation  Probability  Distribution
Value Distribution w. Noise
4 Qubits
. Train RMSE 1124 1177 1468
Results: Lorenz TRMSE | al2  u1ss 016
6 Qubits
S y S te m Train RMSE .0986 0616 1193
Test RMSE .0963 064 1315
. 8 Qubits
( S IMmu I atO r) Training RMSE | .0822 0429 1110
Test RMSE 0798 0463 1285
10 Qubits
Train RMSE 0688 0425 1258
Test RMSE 0699 0422 1298
12 Qubits
Train RMSE 0631 0378 .0986
Test RMSE 0635 0377 1282
14 Qubits ~4 days to compute
Train RMSE 0476 024 0754 -
Test RMSE 046 0249 0988 on DGX-A100 with
16 Qubits all GPUs
Train RMSE .0488 0225 0573
Test RMSE .0493 0237 .0895

Table 7: Simulated training and test error using various different
feature recovery methods and noise configurations measured in
RMSE (Root mean squared error). An IBM Fez noise model
was used to gather the noisy results. The best run from each
category was used, and the elastic net regularization parameters
were tuned for each bin to get lower test loss.



IBM Quantum Implementation

* Implementing quantum circuits is generally very difficult due to the short coherence times of qubits and
intrinsic errors present in quantum computers.

* Our circuit design implements a “measure-and-reset” paradigm which allows for the creation of persistent
memory in QCs and the ability to run a circuit indefinitely without intermediate halts [1][2][3]

* This hasn’t been empirically validated on hardware because of many issues with excess measurement data
on the IBM backend and noise.

* We demonstrate that our circuit can run for a timespan of ~48,000 us and successfully predict the Lorenz
System. This 1s due to the guaranteed weak entanglement the QESN circuit creates, as well as the
“measure-and-reset” paradigm.

* We collect feature signals for a time length of 2000 data points on IBM hardware, greatly exceeding the
previous bests of ~30 data points in circuits that only ran for ~200 us [1]

[1] Hu, F., Khan, S.A., Bronn, N.T., Angelatos, G., Rowlands, G.E., Ribeill, G.J., Tiireci, H.E.: Overcoming the coherence timebarrier in quantum machine learning on temporal data. Nature Communications 15(1),
7491 (2024)

[2] Yasuda, T., Suzuki, Y., Kubota, T., Nakajima, K., Gao, Q., Zhang, W., Shimono, S., Nurdin, H.I., Yamamoto, N.: Quantum reservoir computing with repeated measurements on superconducting devices (2023)
[3] Chen, J., Nurdin, H.I., Yamamoto, N.: Temporal information processing on noisy quantum computers. Phys. Rev. Appl. 14, 024065 (2020)
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Train: 1200 data points Test: 800 data points Washout: 15 Shots: 60,000 Repeated Blocks: 3
Circuit execution time per shot > 48,000 us Median t; = 21392 us & 7, = 119.57 us
Sparsity: ~50% N RMSE (test): .0922

Over 100 times longer than the median 7, and 7, time!
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Conclusion

* We designed and tested a Quantum Echo-state network (QESN) and proved empirically its capabilities at
long-time series prediction using the chaotic Lorenz system.

* We show that our circuit has the necessary properties of memory and nonlinearity, two important
components of classical RNNs that warranted further investigation in quantum circuits.

* We introduce tunable hyperparameters such as sparsity and repeatable data re-uploading blocks which
allow for reduced circuit depth without sacrificing performance or output feature “richness”, and
controllable amounts of nonlinearity, respectively.

* We ran the circuit on IBM hardware demonstrating the first ever gate-based hardware validation of the
“measure-and-reset” paradigm successfully executing for long-time series prediction with an experiment
that ran over 100x longer than the median 74 = 213.92 us and t, = 119.57 us of the IBM
Marrakesh QPU maintaining coherence and memory for the entire 2000 data point train and test set of the
Lorenz System.
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