

Quantum Implicit Neural Compression

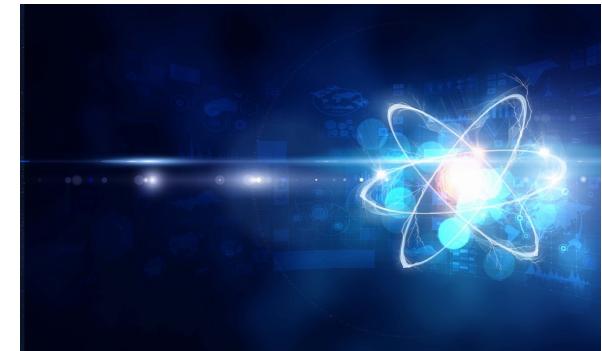
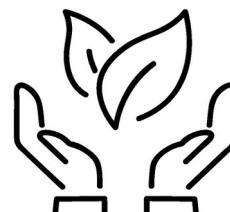
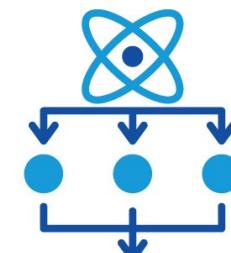
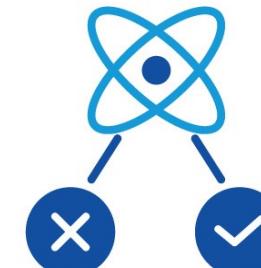
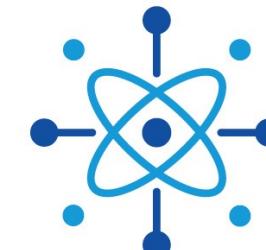
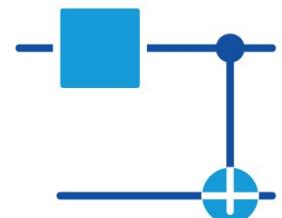
Takuya Fujihashi¹, Toshiaki Koike-Akino²

¹Osaka University, ²Mitsubishi Electric Research Laboratories (MERL)

First International Workshop on Quantum Computing and
Artificial Intelligence (QC+AI) @ AAAI 2025

Potentials of Quantum AI

- Quantum machine learning (QML) is an emerging framework leveraging quantum processing units (QPUs) for AI tasks
- Potential advantages (hypes) of quantum AI:
 - Quantum computing may accelerate AI systems
 - Quantum computing may reduce power consumption of AI systems
 - Quantum parallelism may improve accuracy with ensemble effect
 - Variational principle may exploit inherent noise to prevent overfitting
 - Exponential expressivity of quantum state may represent large AI model efficiently
 - 1000 variables can be mapped with 10 qubits
 - Structured quantum gates may represent AI model efficiently
 - QNN with few parameters may achieve performance of DNN with massive parameters



Quantum AI for Parameter-Efficient Models

- We introduced quantum AI for parameter-efficient fine-tuning (PEFT): Quantum-PEFT
 - Quantum-PEFT [Koike-Akino 2024] uses quantum tensor network
 - Presented in ICML-W'24; Accepted to ICLR'25
 - QML realizes ultra-efficient parameterization due to exponential expressivity and structure
 - QML parameterization can be used in conventional CPU/GPU too besides QPU
- We propose to use QML for data efficiency

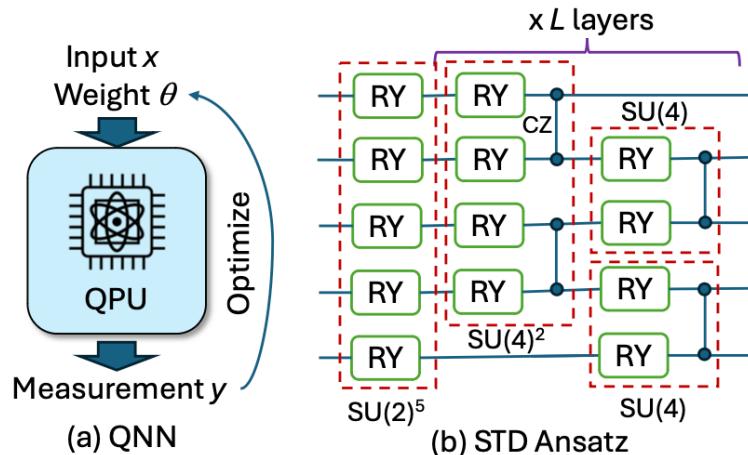
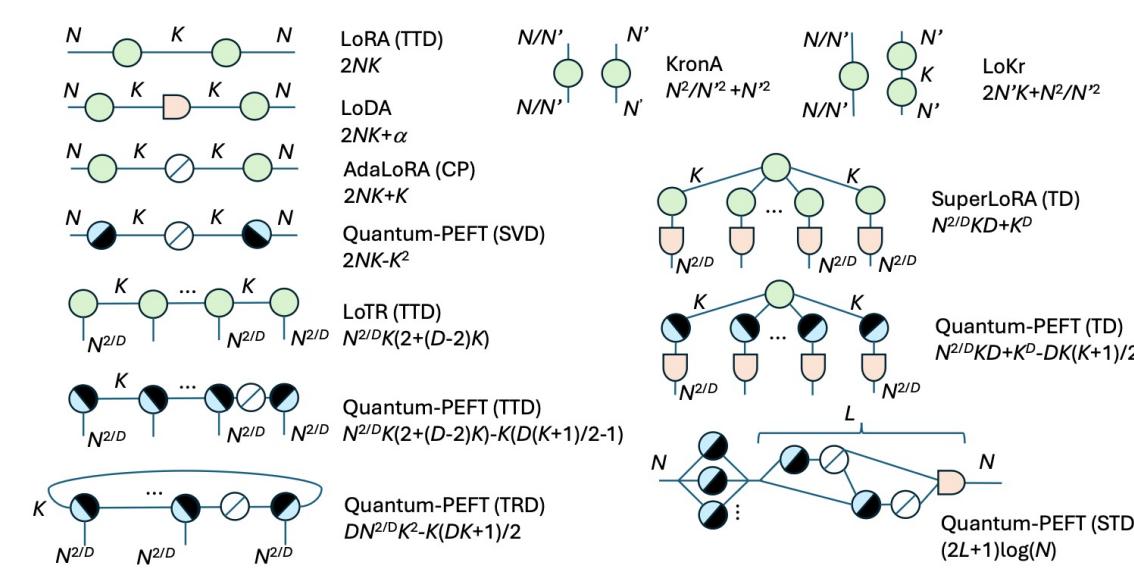
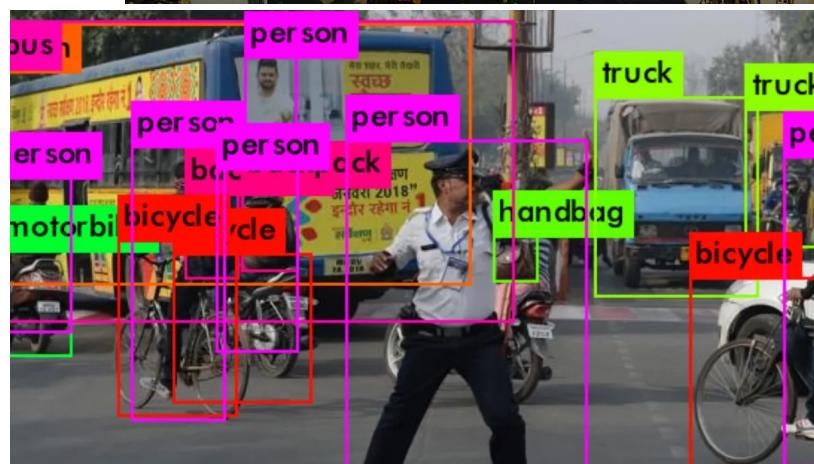
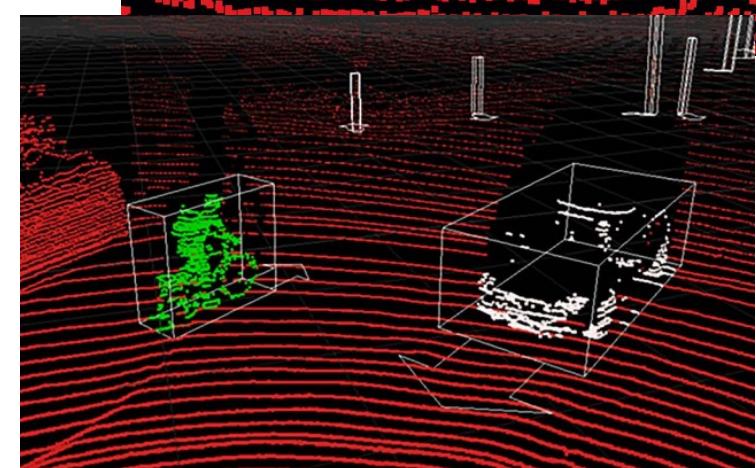


Figure 5: Tensor diagrams of Quantum-PEFT and LoRA variants in tensor network perspectives for a matrix size of N and rank K . The number of parameters are also present. Circle denotes dense multi-linear tensor node. Slashed open circles denote diagonal node. Half-closed circles denote unitary node. Delay symbols denote nonlinear nodes.

Background

- Growing demands for multimedia services
 - High-resolution images, videos, and 3D point clouds
 - Applications
 - Scene rendering for extended reality (XR), augmented reality (AR), virtual reality (VR)
 - Digital twin
 - Digital archive
 - Datasets for 2D/3D/4D scene analytics
 - Detection,
 - Segmentation
 - Tracking



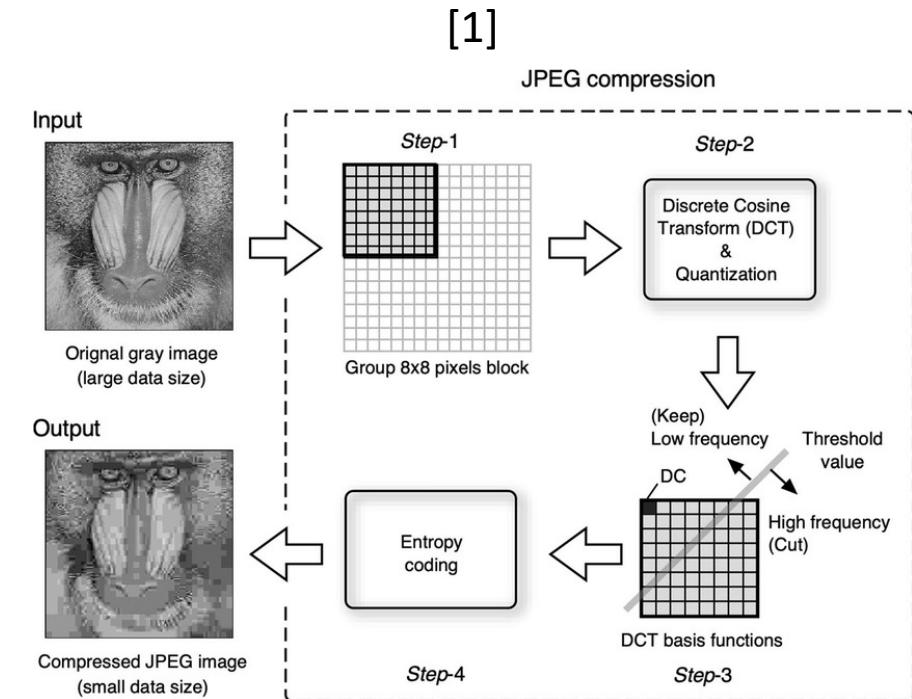
Issue & Typical Solutions

- Issue
 - Large rate for representing high-quality multimedia signals
 - GBs and TBs for representing full 3D scene [1,2]
 - Large storage and transmission costs
- Typical solutions
 - Signal processing-based compression
 - Joint Photographic Experts Group (JPEG)
 - JPEG2000
 - zip
 - ...

JPEG: Block-wise transform, quantization, and entropy coding

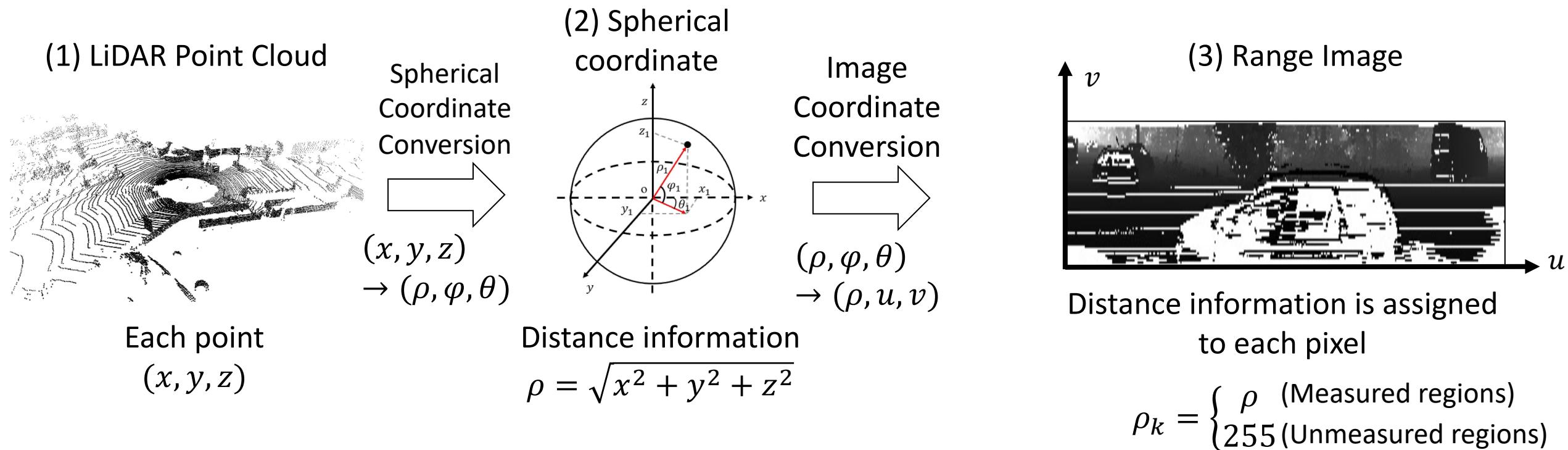
[1] <https://venturebeat.com/business/how-singapore-created-the-first-country-scale-digital-twin/>

[2] https://ene-fro.com/article/ef339_a1/?utm_source=twitter&utm_medium=display&utm_campaign=enefrox



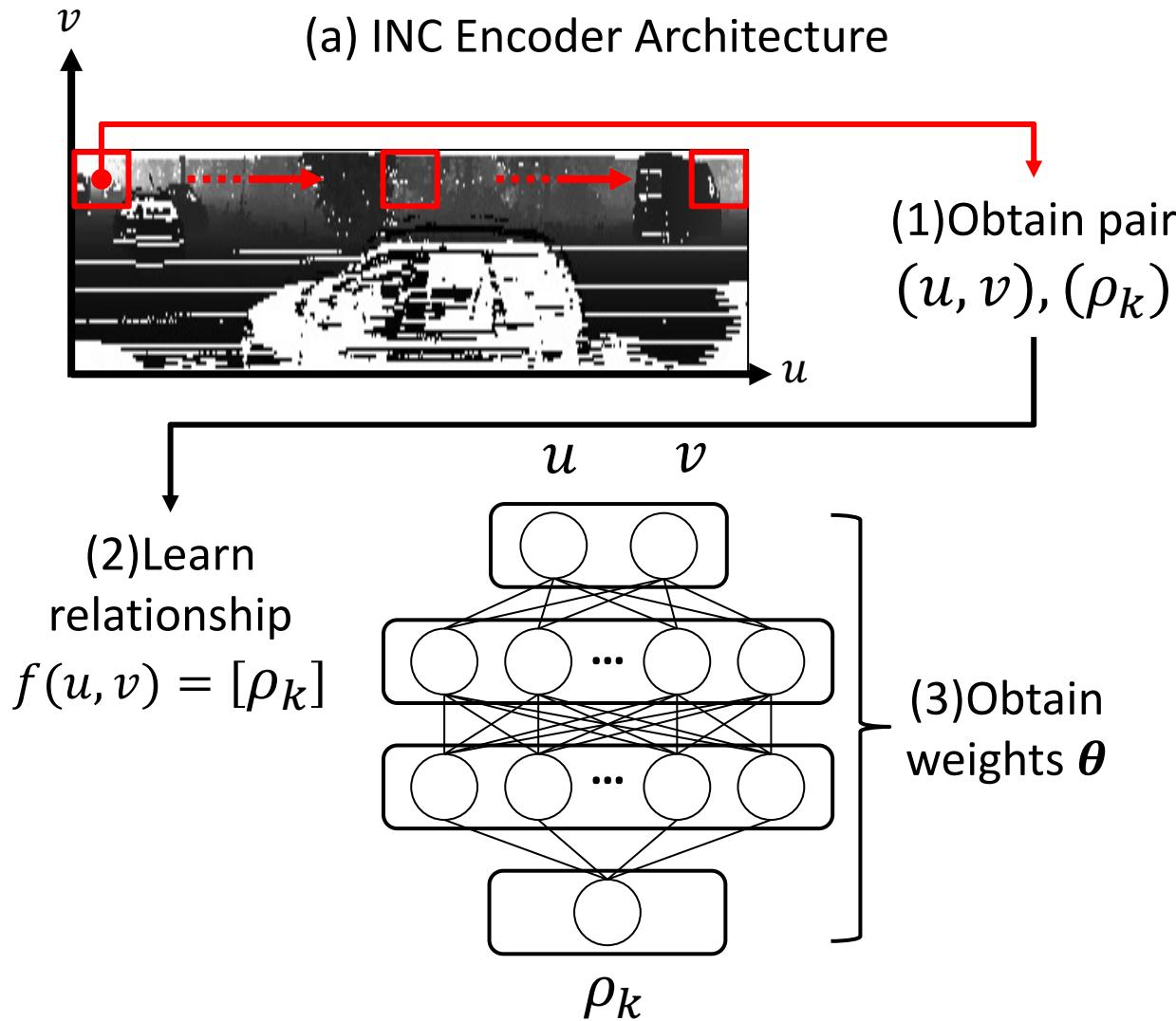
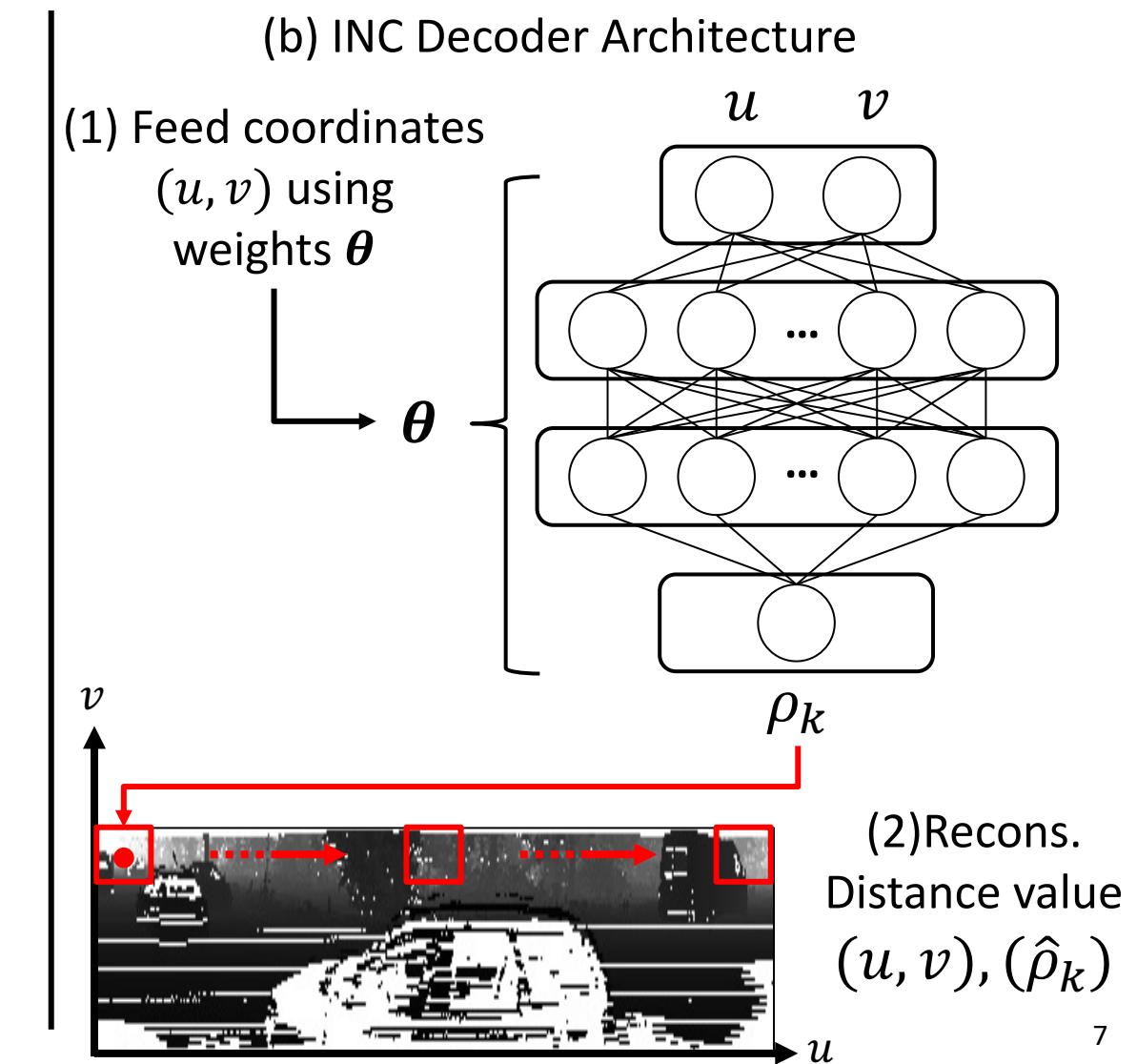
Extension for LiDAR Point Cloud

- Image coding solutions can be adopted for 3D LiDAR point clouds
 - Obtain 2D range image (RI) from 3D LiDAR point cloud
 - Take image coding solutions for RIs
- RI conversion from 3D LiDAR point cloud
 - LiDAR distance information ρ is assigned to image coordinate (u, v)
 - Maximum value is assigned to unmeasured regions



Related Work: Implicit Neural Compression (INC)

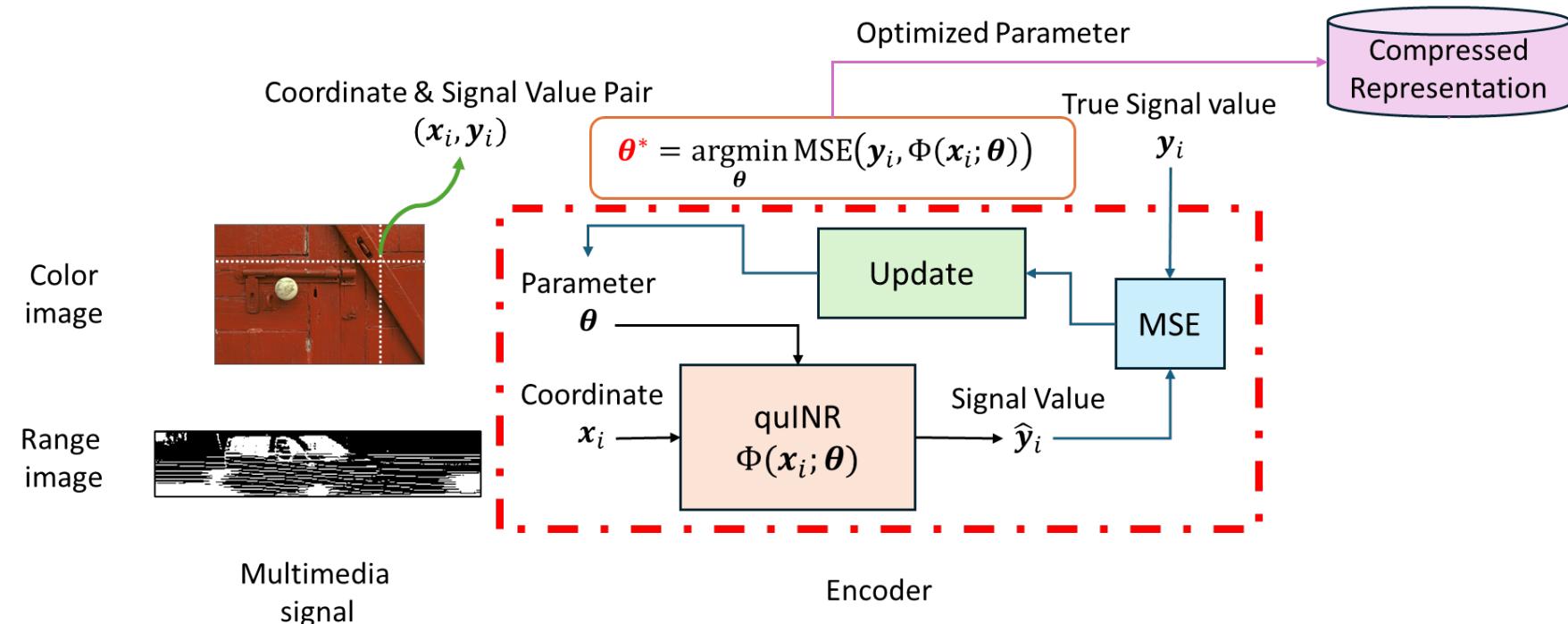
- For a single image, approximate the function that represents the relationship between image coordinates and pixel values using implicit neural representation (INR)



Key Contributions of Our Work

- Purpose
 - Propose quantum-inspired INC, namely, quINR $\Phi(x_i; \theta)$, for further compact representation against existing coding and INC solutions
- Key contributions
 - Demonstrate potentials of quantum neural network (QNN) architecture for signal compression
 - Design a hybrid quantum-classical NN architecture
 - Extract a feature vector from classical fully-connected layer
 - Encode an arbitrary size of the feature vector into qubits using embedding and entangling layers

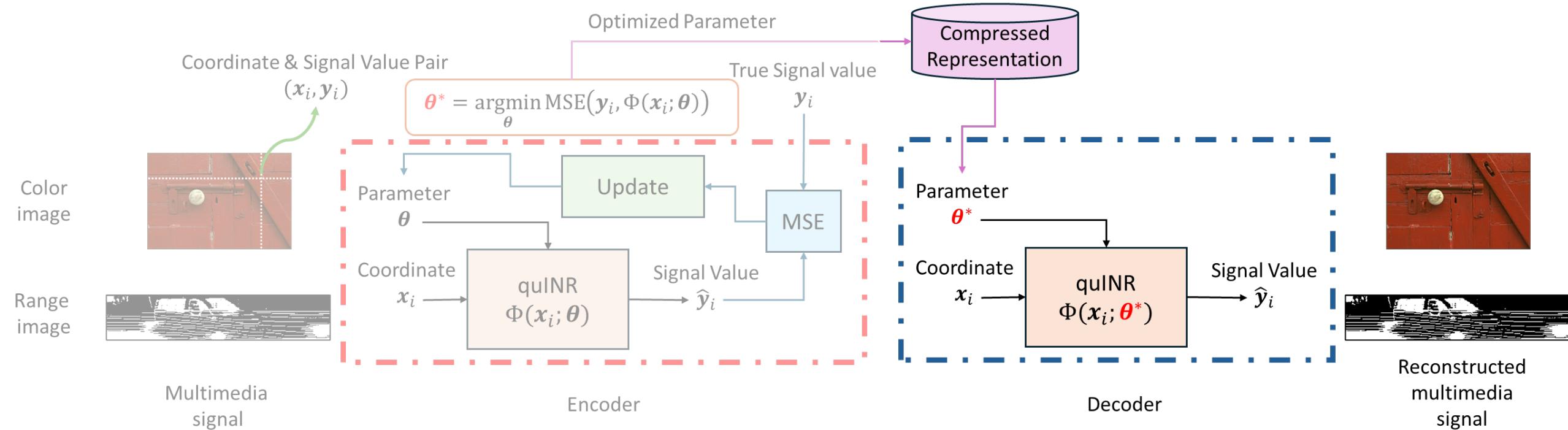
Proposed Quantum Implicit Neural Compression: Encoder



- **Encoding**

1. Feed a pair of image coordinates (x_i) and pixel value (y_i) for training the coordinate-to-value relation
2. Train QNN minimizing mean squared error (MSE) to obtain the optimized parameters θ
 - Well-trained parameters θ^* are stored in storage or transmitted to the decoder as compact format

Proposed Quantum Implicit Neural Compression: Decoder



- **Decoding**

1. Use θ^* for reproducing pixel value through forward process $\Phi(x_i; \theta^*)$ to reconstruct pixel value \hat{y}_i
2. Sequentially feeds all coordinates x_i to qINR $\Phi(x_i; \theta^*)$ to collect all estimated pixel values

Proposed Quantum Implicit Neural Compression: Architecture



- A hybrid quantum-classical NN architecture
 - A linear layer with a sinusoidal activation to obtain an embedding vector h_i
 - Embedding vector h_i is fed into QNN layers (embedding and entangling layers)
 - Folded-angle embedding: encode an arbitrary size of vector h_i into a finite number of qubits
 - Entangling: θ –parameterized quantum circuit, and each parameter controls rotation gates
 - Measure probability values of quantum states and regard them as output values

Experiments

- Datasets
 - RGB color image: Kodak (consist of 24 images)
 - Kodim02: 768×512 pixels
 - LiDAR RI: KITTI
 - Sequence 00-00: 51770 3D points
 - RI resolution: 1024×64 pixels
- Metric
 - Peak Signal-to-Noise Ratio (PSNR)
 - $$\text{PSNR} = 10 \log_{10} \left(\frac{\text{MAX}^2}{\text{MSE}} \right)$$
- Baseline
 - JPEG2000
 - Typical image codec
 - Compression with Implicit Neural representation (COIN)
 - Pioneer work on INC

Kodim02

Kodim03

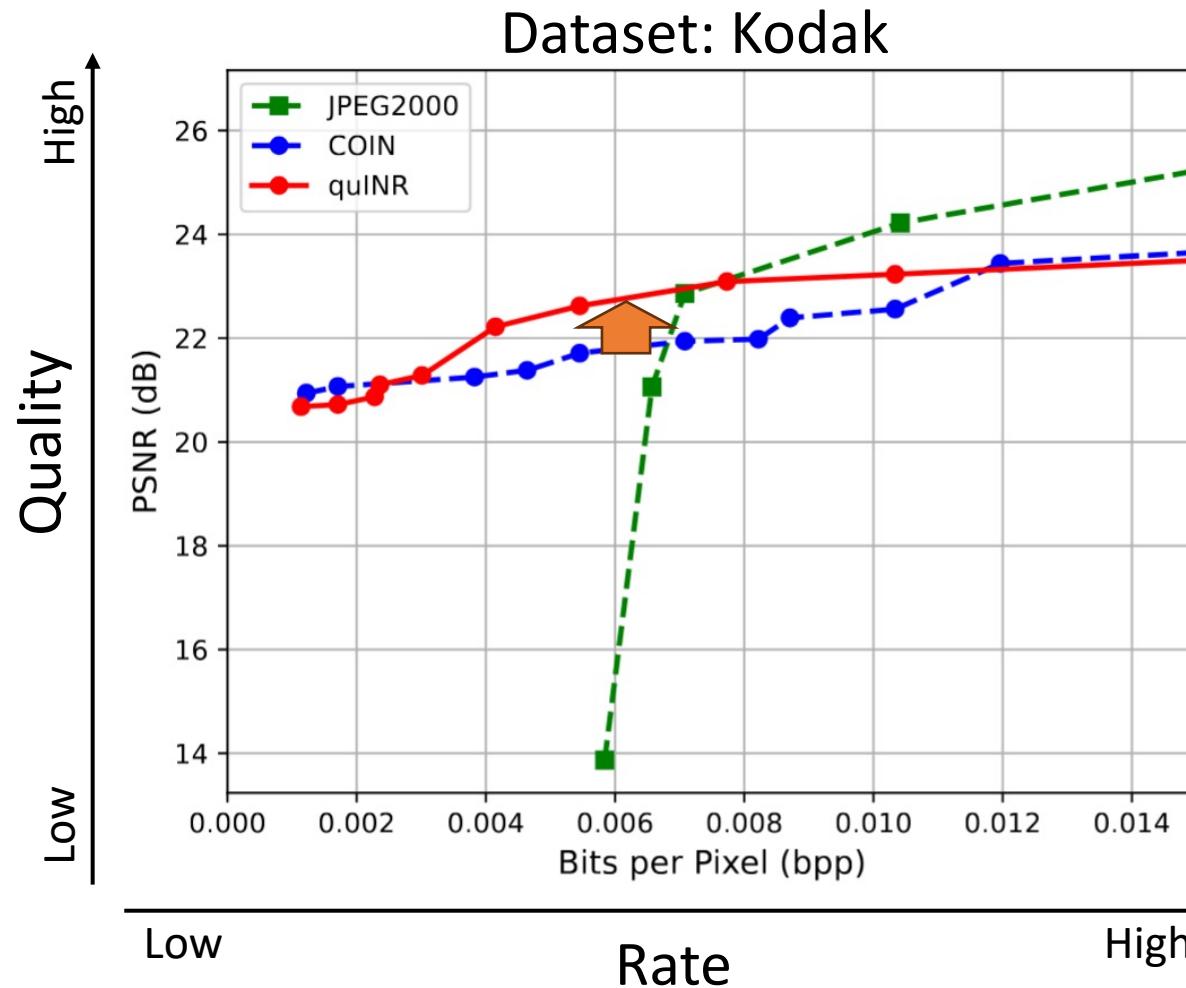
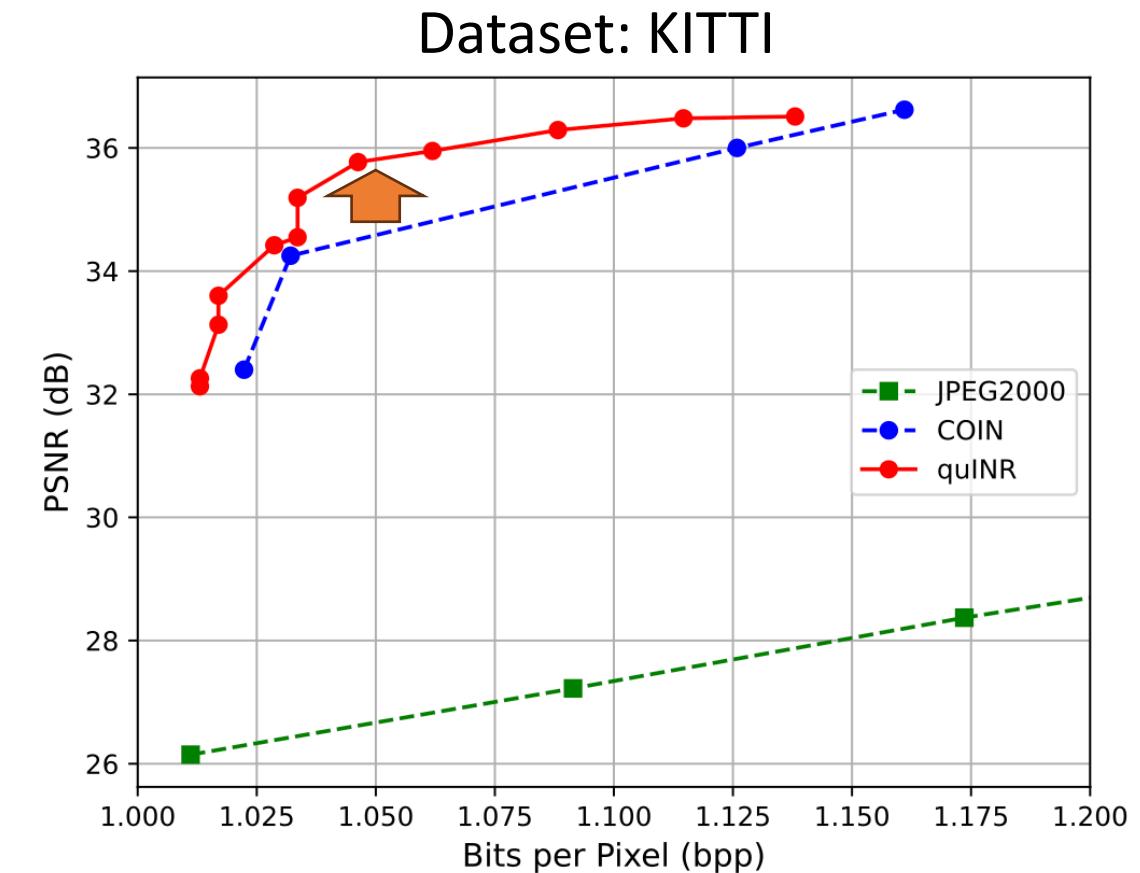
KITTI dataset

LiDAR point cloud: Seq 00

LiDAR RI: Seq 00

Rate Distortion Performance

- quINR achieves better image quality at a small bpp regime, up to 1dB gain
- potential to reconstruct clean signals at band- and storage-limited environments



Summary

- Conclusion
 - Propose quantum-inspired INC, **quiINR**, for further compact representation against existing coding and INC solutions
 - Demonstrate the potential of QNN architecture for signal compression
 - Design a hybrid quantum-classical NN architecture
 - Evaluations using RGB image and LiDAR RI
 - quiINR achieves better image quality at a small bpp regime up to 1dB gain
- Future Work
 - Limited rate-distortion performance in color image compression
 - Quantum network architecture search
 - Distillation for quantum network architecture
- Questions?
 - koike@merl.com