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Lo uswesi potentials of Quantum Al

Changes for the Better

* Quantum machine learning (QML) is an emerging framework leveraging quantum
processing units (QPUs) for Al tasks

* Potential advantages (hypes) of quantum Al:
— Quantum computing may accelerate Al systems
— Quantum computing may reduce power consumption of Al systems
— Quantum parallelism may improve accuracy with ensemble effect
— Variational principle may exploit inherent noise to prevent overfitting

— Exponential expressivity of quantum state may represent large Al model efficiently
= 1000 variables can be mapped with 10 qubits

— Structured quantum gates may represent Al model efficiently
= QNN with few parameters may achieve performance of DNN with massive parameters
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e MTsUBSH Quantum Al for Parameter-Efficient Models

Changes for the Better

* We introduced quantum Al for parameter-efficient fine-tuning (PEFT): Quantum-PEFT
— Quantum-PEFT [Koike-Akino 2024] uses quantum tensor network
— Presented in ICML-W’24; Accepted to ICLR’25
— QML realizes ultra-efficient parameterization due to exponential expressivity and structure
— QML parameterization can be used in conventional CPU/GPU too besides QPU

* We propose to use QML for data efficiency
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Figure 5: Tensor diagrams of Quantum-PEFT and LoRA variants in tensor network perspectives for
a matrix size of NV and rank K. The number of parameters are also present. Circle denotes dense
multi-linear tensor node. Slashed open circles denote diagonal node. Half-closed circles denote
unitary node. Delay symbols denote nonlinear nodes.
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e YR Background

Changes for the Better

* Growing demands for multimedia services
— High-resolution images, videos, and 3D point clouds
— Applications

= Scene rendering for
extended reality (XR),
augmented reality (AR),
virtual reality (VR)

= Digital twin
= Digital archive

» Datasets for 2D/3D/4D & e |
scene analytics 4 b L sl N
o Detection, .
o Segmentation

o Tracking
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S UEE |ssue & Typical Solutions

Changes for the Better

* [ssue
— Large rate for representing high-quality multimedia signals
= GBs and TBs for representing full 3D scene [1,2]

— Large storage and transmission costs

* Typical solutions

 Signal processing-based compression

Joint Photographic Experts Group (JPEG)
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[1] https://venturebeat.com/business/how-singapore-created-the-first-country-scale-digital-twin/
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Lo usest Extension for LIDAR Point Cloud

Changes for the Better

* Image coding solutions can be adopted for 3D LiDAR point clouds
— Obtain 2D range image (RI) from 3D LiDAR point cloud
— Take image coding solutions for Rls

* Rl conversion from 3D LiDAR point cloud

— LiDAR distance information p is assigned to image coordinate (u, v)

— Maximum value is assigned to unmeasured regions
(2) Spherical

(1) LiDAR Point Cloud Spherical coordinate Image (3) Range Image
Coordinate Coordinate
o Conversion Conversion
(x,¥,2) (p, @, 0)
- = (0,9, 0) - (p,u,v) Distance information is assigned
Each point Distance information to each pixel
(x,¥,2) p = \/xz + y?% + 72 p (Measured regions)

Pk = {255(Unmeasured regions)
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S lEs Related Work: Implicit Neural Compression (INC)

Changes for the Better

* For a single image, approximate the function that represents the relationship between
image coordinates and pixel values using implicit neural representation (INR)

v (a) INC Encoder Architecture (b) INC Decoder Architecture
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e YR Key Contributions of Our Work

Changes for the Better

* Purpose

— Propose quantume-inspired INC, namely, quINR ®(x;; @), for further compact representation
against existing coding and INC solutions

e Key contributions
— Demonstrate potentials of quantum neural network (QNN) architecture for signal compression

— Design a hybrid quantum-classical NN architecture
= Extract a feature vector from classical fully-connected layer
= Encode an arbitrary size of the feature vector into qubits using embedding and entangling layers
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e YR Proposed Quantum Implicit Neural Compression: Encoder

Changes for the Better

Optimized Parameter
ompressed
Coordinate & Signal Value Pair True Signal value
(X0 y2) { 6* = argmin MSE(y;, ®(x;;0)) I Yi
0
Il ________________ I
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MuI'Fimedia Encoder
signal
* Encoding
1. Feed a pair of image coordinates (x;) and pixel value (y;) for training the coordinate-to-value
relation

2. Train QNN minimizing mean squared error (MSE) to obtain the optimized parameters 0
= Well-trained parameters 8" are stored in storage or transmitted to the decoder as compact format
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MITSUBISHI

»= 2" Proposed Quantum Implicit Neural Compression: Decoder

Optimized Parameter Compreseed
Coordinate & Signal Value Pair True Signal value Representation
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* Decoding
1.

Use 8" for reproducing pixel value through forward process ®(x;; 8*) to reconstruct pixel
value y;

2. Sequentially feeds all coordinates x; to quINR ®(x;; 8*) to collect all estimated pixel values
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e YR Proposed Quantum Implicit Neural Compression: Architecture

Changes for the Better

quiNR ®(x;; 9)
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* A hybrid quantum-classical NN architecture
— A linear layer with a sinusoidal activation to obtain an embedding vector h;
— Embedding vector h; is fed into QNN layers (embedding and entangling layers)

* Folded-angle embedding: encode an arbitrary size of vector h; into a finite number of qubits
= Entangling: @ —parameterized quantum circuit, and each parameter controls rotation gates

— Measure probability values of quantum states and regard them as output values
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e SR Experiments

Changes for the Better

* Datasets
— RGB color image: Kodak (consist of 24 images)
= Kodim02: 768X512 pixels
— LiDAR RI: KITTI
= Sequence 00-00: 51770 3D points
= Rl resolution: 1024 %64 pixels

e Metric

Kodim02 KodimO03
KITTI dataset

— Peak Signal-to-Noise Ratio (PSNR) T G0 ,&%% B
2 1 (1Y R
* PSNR = 101og1o (o7 ) oy 2y NSO
. " X ) \:‘gm \‘%:&}
* Baseline e N
~ JPEG2000 N
= Typical image codec LiDAR point cloud: Seq 00

— Compression with Implicit
Neural representation (COIN)

= Pioneer work on INC
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‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

Rate Distortion Performance

* quiNR achieves better image quality at a small bpp regime, up to 1dB gain

— potential to reconstruct clean signals at band- and storage-limited environments
Dataset: Kodak

Dataset: KITTI
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S MBES Summary

Changes for the Better

* Conclusion

— Propose quantum-inspired INC, quiNR, for further compact representation against existing
coding and INC solutions

= Demonstrate the potential of QNN architecture for signal compression
= Design a hybrid quantum-classical NN architecture

— Evaluations using RGB image and LiDAR Rl
= quiNR achieves better image quality at a small bpp regime up to 1dB gain

e Future Work

— Limited rate-distortion performance in color image compression
= Quantum network architecture search
= Distillation for guantum network architecture

e Questions?
— koike@merl.com
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