

A Scalable Quantum-enhanced Neural Network with Non-local Connections

Sparsh Gupta, Debanjan Konar, and Vaneet Aggarwal

Purdue University, USA
vaneet@purdue.edu

March 3, 2025

Contents

- 1 Introduction to Non-Local Operations in Neural Networks
- 2 Limitations of Non-Local Operations
- 3 Problem Statement: Key Questions?
- 4 Quantum-enhanced Non-Local Neural Network
- 5 Simulation Results
- 6 Discussions and Future Works

Introduction to Non-Local Operations in Neural Networks

- Non-local operations enable the capture of long-range dependencies through weighted sums of features across the input¹.

¹ X. Wang, R. Girshick, A. Gupta and K. He, "Non-local Neural Networks," *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA*, pp. 7794–7803, 2018, doi: [10.1109/CVPR.2018.00813](https://doi.org/10.1109/CVPR.2018.00813).

Introduction to Non-Local Operations in Neural Networks

- Non-local operations enable the capture of long-range dependencies through weighted sums of features across the input¹.
- It surpasses the constraints of traditional convolution operations that focus solely on local neighborhoods.

¹ X. Wang, R. Girshick, A. Gupta and K. He, "Non-local Neural Networks," *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA*, pp. 7794–7803, 2018, doi: [10.1109/CVPR.2018.00813](https://doi.org/10.1109/CVPR.2018.00813).

Introduction to Non-Local Operations in Neural Networks

- Non-local operations enable the capture of long-range dependencies through weighted sums of features across the input¹.
- It surpasses the constraints of traditional convolution operations that focus solely on local neighborhoods.

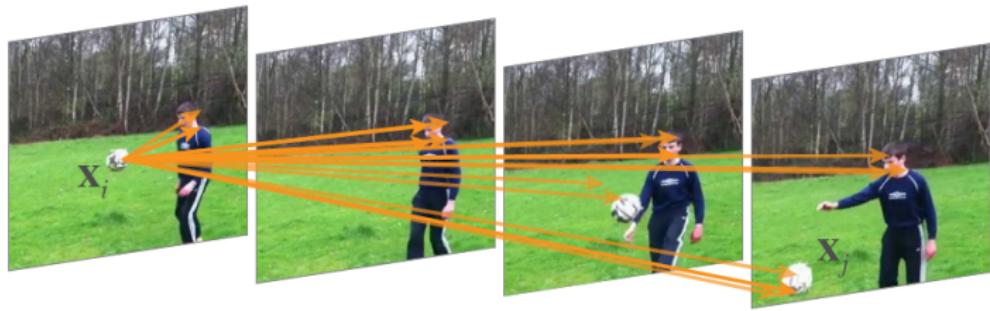


Figure 1: A spacetime non-local operation in a neural network trained for video classification in Kinetics [1].

¹ X. Wang, R. Girshick, A. Gupta and K. He, "Non-local Neural Networks," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 7794–7803, 2018, doi: 10.1109/CVPR.2018.00813.

Introduction to Non-Local Operations in Neural Networks

- Non-local operations enable the capture of long-range dependencies through weighted sums of features across the input¹.
- It surpasses the constraints of traditional convolution operations that focus solely on local neighborhoods.

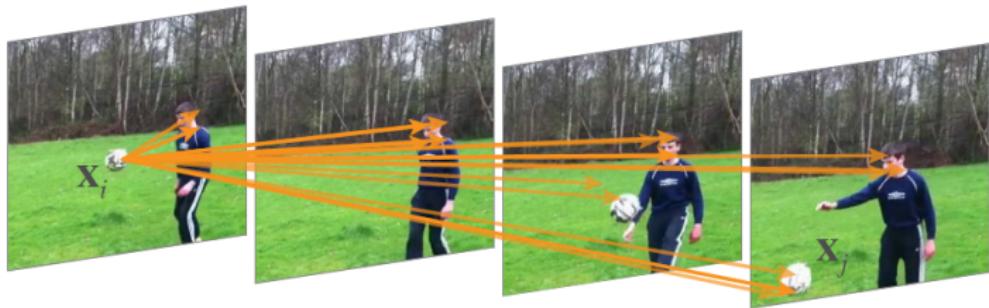


Figure 1: A spacetime non-local operation in a neural network trained for video classification in Kinetics [1].

- Non-local operations often require computing pairwise relationships between all elements in a feature set.

¹ X. Wang, R. Girshick, A. Gupta and K. He, "Non-local Neural Networks," *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA*, pp. 7794–7803, 2018, doi: 10.1109/CVPR.2018.00813.

Limitations of Non-Local Operations

- Non-local operations leads to high computational and memory demands².

²

N. Ye, K. Feng and S. Lin, "Local-non-local complementary learning network for 3D point cloud analysis," *Sci. Rep.*, vol. 15, no. 480, 2025, doi: <https://doi.org/10.1038/s41598-024-84248-9>.

Limitations of Non-Local Operations

- Non-local operations leads to high computational and memory demands².

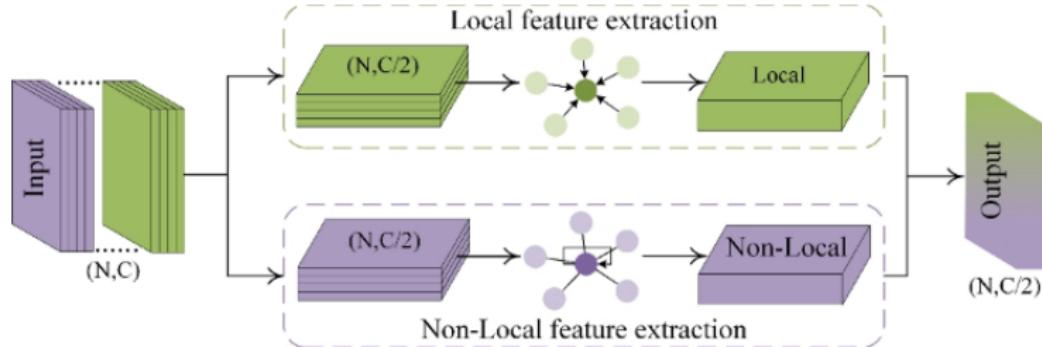


Figure 2: The schematic diagram of Local and Non-Local feature extraction [2].

²

N. Ye, K. Feng and S. Lin, "Local-non-local complementary learning network for 3D point cloud analysis," *Sci. Rep.*, vol. 15, no. 480, 2025, doi: <https://doi.org/10.1038/s41598-024-84248-9>.

Limitations of Non-Local Operations

- Non-local operations leads to high computational and memory demands².

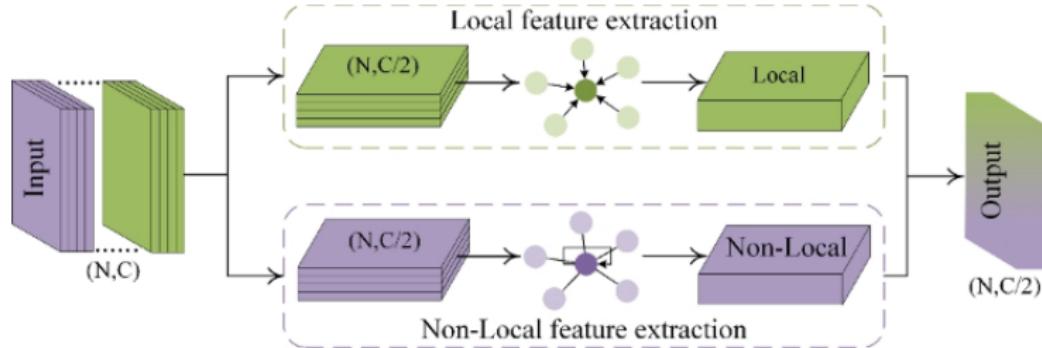


Figure 2: The schematic diagram of Local and Non-Local feature extraction [2].

- Hence, scaling non-local neural networks to large-scale problems can be challenging.

²

N. Ye, K. Feng and S. Lin, "Local-non-local complementary learning network for 3D point cloud analysis," *Sci. Rep.*, vol. 15, no. 480, 2025, doi: <https://doi.org/10.1038/s41598-024-84248-9>.

Limitations of Non-Local Operations

- Non-local operations leads to high computational and memory demands².

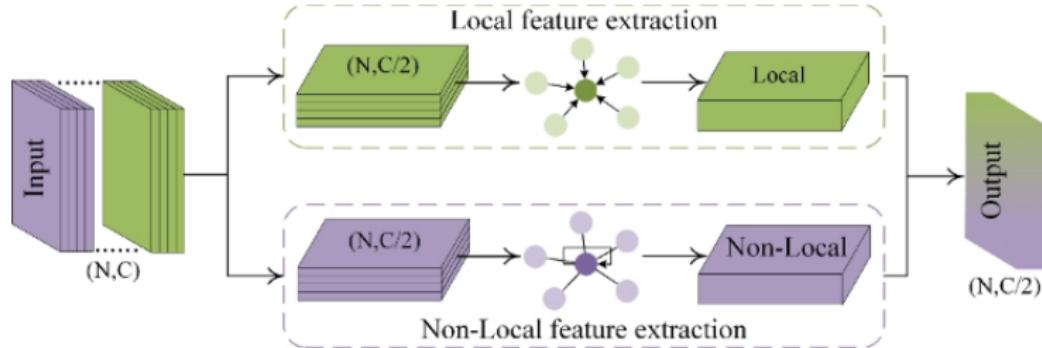


Figure 2: The schematic diagram of Local and Non-Local feature extraction [2].

- Hence, scaling non-local neural networks to large-scale problems can be challenging.
- Difficulty in capturing global dependencies efficiently without incurring massive memory costs.

² N. Ye, K. Feng and S. Lin, "Local-non-local complementary learning network for 3D point cloud analysis," *Sci. Rep.*, vol. 15, no. 480, 2025, doi: <https://doi.org/10.1038/s41598-024-84248-9>.

Problem Statement: Key Questions?

- Can we design a scalable hybrid quantum-classical model that efficiently captures non-local dependencies?

Problem Statement: Key Questions?

- Can we design a scalable hybrid quantum-classical model that efficiently captures non-local dependencies?

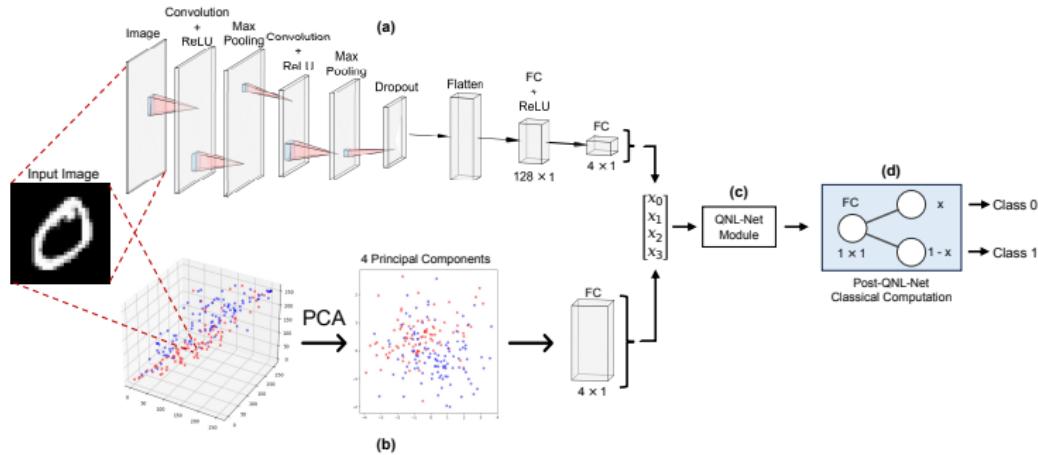


Figure 3: The proposed hybrid classical-quantum Quantum-enhanced Neural Network with Non-local connections (QNL-Net)³ frameworks comprises: (a) CNN-QNL-Net (b) PCA-QNL-Net (c) QNL-Net (d) Post-QNL-Net Classical Comp.

³ S. Gupta, D. Konar, and V. Aggarwal, "A Scalable Quantum Non-local Neural Network for Image Classification," *arXiv*, 2024, doi: <https://arxiv.org/abs/2407.18906>

Problem Statement: Key Questions?

- Can we design a scalable hybrid quantum-classical model that efficiently captures non-local dependencies?

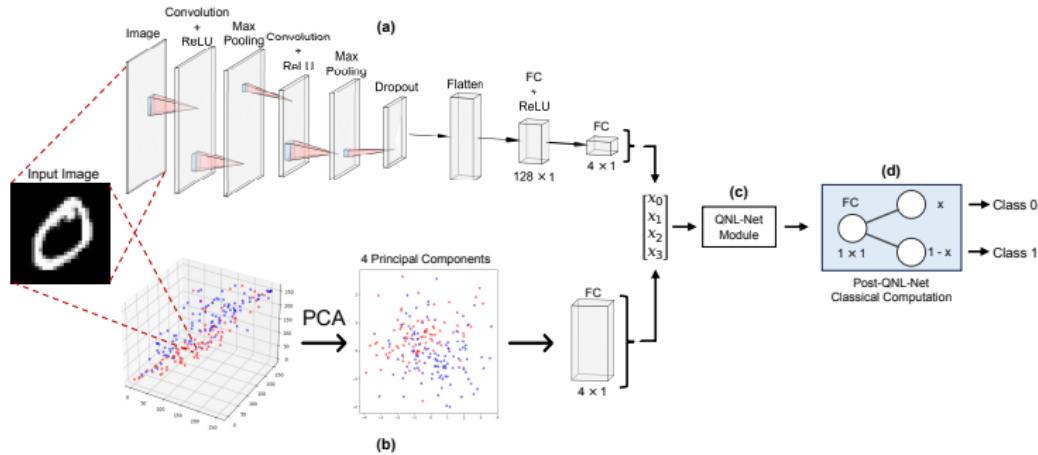


Figure 3: The proposed hybrid classical-quantum Quantum-enhanced Neural Network with Non-local connections (QNL-Net)³ frameworks comprises: (a) CNN-QNL-Net (b) PCA-QNL-Net (c) QNL-Net (d) Post-QNL-Net Classical Comp.

- How can quantum entanglement be leveraged to perform non-local operations more efficiently than classical methods?

³ S. Gupta, D. Konar, and V. Aggarwal, "A Scalable Quantum Non-local Neural Network for Image Classification," *arXiv*, 2024, doi: <https://arxiv.org/abs/2407.18906>

Quantum-enhanced Non-Local Neural Network

- QNL-Net: A hybrid quantum-classical model³ that leverages quantum entanglement for non-local feature interactions.

Quantum-enhanced Non-Local Neural Network

- QNL-Net: A hybrid quantum-classical model³ that leverages quantum entanglement for non-local feature interactions.

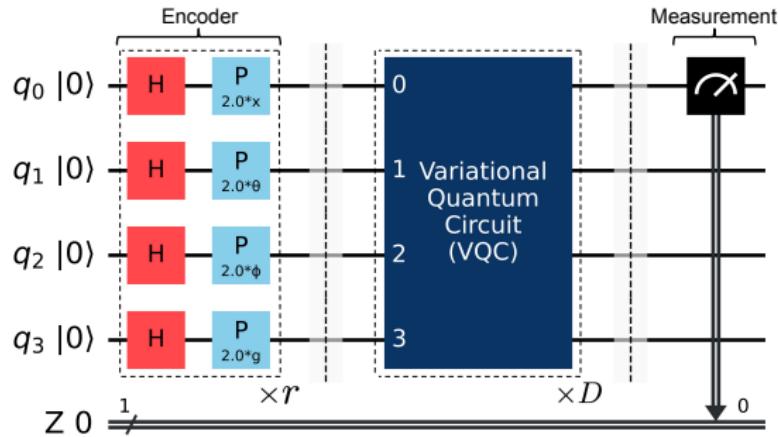


Figure 4: Our Quantum-enhanced Non-local Neural Network (QNL-Net)³ comprises a four-qubit circuit composed of three parts: (i) Encoder: To encode classical data into quantum states. (ii) Variational Quantum Circuit (VQC): classically trainable quantum circuit. (iii) Measurement: the circuit is measured at qubit 0 in the Pauli-Z basis.

Quantum-enhanced Non-Local Neural Network

- QNL-Net: A hybrid quantum-classical model³ that leverages quantum entanglement for non-local feature interactions.

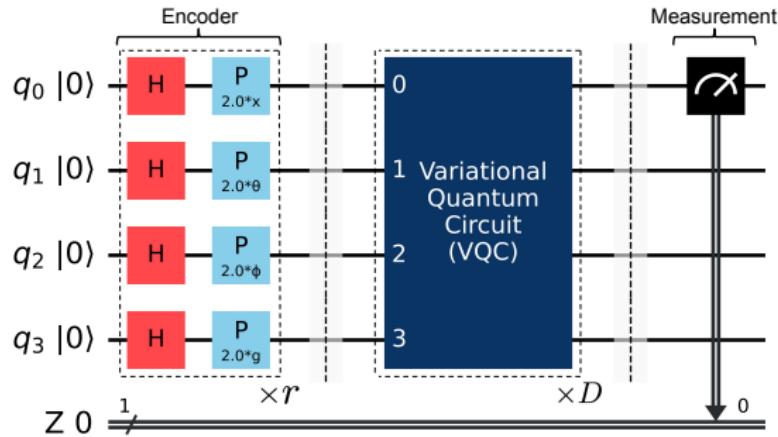


Figure 4: Our Quantum-enhanced Non-local Neural Network (QNL-Net)³ comprises a four-qubit circuit composed of three parts: (i) Encoder: To encode classical data into quantum states. (ii) Variational Quantum Circuit (VQC): classically trainable quantum circuit. (iii) Measurement: the circuit is measured at qubit 0 in the Pauli-Z basis.

- Encoding classical data, $X = [y_0, y_1, \dots, y_{n-1}] \in \mathbb{R}^n$ into quantum space: $|\psi_\Phi\rangle = (\bigotimes_{k=1}^n P(\lambda_k) H^{\otimes n})^r |X\rangle$

QNL-Net: Variational Quantum Circuits

- The encoder and the VQC ansatz have r and D repetitions respectively.

QNL-Net: Variational Quantum Circuits

- The encoder and the VQC ansatz have r and D repetitions respectively.
- The Encoder has $4r$ trainable parameters and the VQC has $5D$ trainable parameters (for $n = 4$ input qubits).

QNL-Net: Variational Quantum Circuits

- The encoder and the VQC ansatz have r and D repetitions respectively.
- The Encoder has $4r$ trainable parameters and the VQC has $5D$ trainable parameters (for $n = 4$ input qubits).

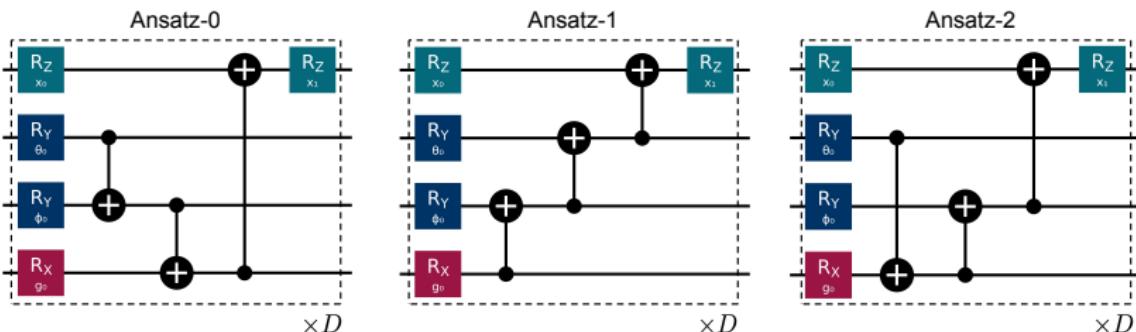


Figure 5: The three ansatzes used as the Variational Quantum Circuits (VQC) in our QNL-Net using C_X gates (CNOT) are: cyclic pattern (Ansatz-0), reverse linear chain (Ansatz-1), and a mixed pattern (Ansatz-2)³.

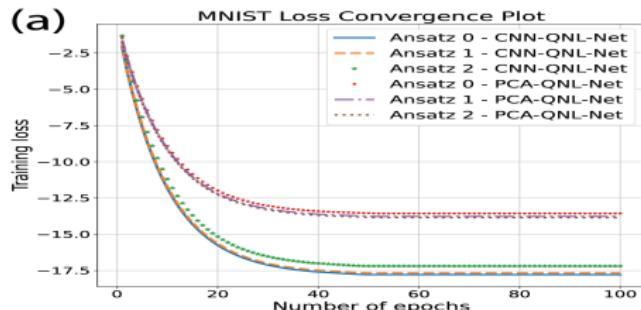
QNL-Net: Simulation Results

- Our QNL-Net has been implemented using the *EstimatorQNN* module of Qiskit ML 0.7.2 and Qiskit 1.1.0.

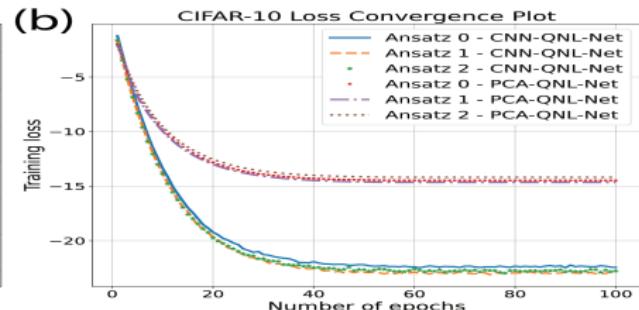
QNL-Net: Simulation Results

- Our QNL-Net has been implemented using the *EstimatorQNN* module of Qiskit ML 0.7.2 and Qiskit 1.1.0.

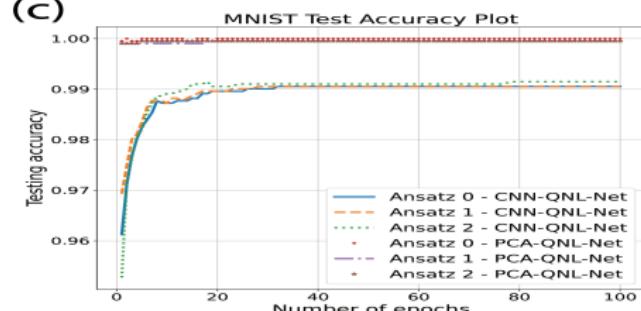
(a)



(b)



(c)



(d)

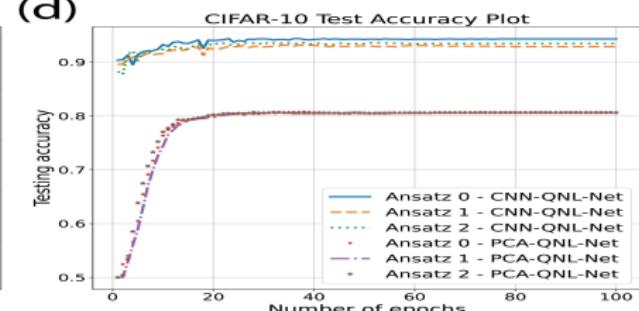


Figure 6: Training loss convergence and test accuracy plots for the CNN-QNL-Net and PCA-QNL-Net models for the three ansatzes with one feature map repetition ($r = 1$) and one ansatz repetition ($D = 1$) on MNIST and CIFAR-10 datasets.

QNL-Net: Simulation Results

Table 1: Performance of the proposed QNL-Net model on binary classification tasks across datasets: MNIST digits 0 and 1 and CIFAR-10 classes 2 (bird) and 8 (ship).

Dataset	Ansatz	Model	Learning Rate	Train Accuracy	Test Accuracy
MNIST (0, 1)	0	CNN-QNL-Net	1×10^{-4}	99.97 ± 0.02	99.96 ± 0.03
	1	CNN-QNL-Net	1×10^{-4}	99.96 ± 0.02	99.95 ± 0.02
	2	CNN-QNL-Net	1×10^{-4}	99.96 ± 0.03	99.95 ± 0.04
	0	PCA-QNL-Net	1.5×10^{-4}	99.65 ± 0.17	99.54 ± 0.16
	1	PCA-QNL-Net	1.5×10^{-4}	99.24 ± 0.19	99.18 ± 0.34
	2	PCA-QNL-Net	1.5×10^{-4}	99.67 ± 0.23	99.59 ± 0.21
CIFAR-10 (2, 8)	0	CNN-QNL-Net	3×10^{-4}	94.20 ± 0.77	93.54 ± 0.66
	1	CNN-QNL-Net	3×10^{-4}	94.13 ± 0.45	93.98 ± 0.37
	2	CNN-QNL-Net	3×10^{-4}	94.21 ± 0.32	93.76 ± 0.14
	0	PCA-QNL-Net	4×10^{-4}	81.94 ± 1.51	81.16 ± 1.09
	1	PCA-QNL-Net	4×10^{-4}	81.79 ± 0.34	80.95 ± 0.35
	2	PCA-QNL-Net	4×10^{-4}	81.67 ± 0.73	80.86 ± 0.74

Table 2: Performance of the QNL-Net model compared with QTN-VQC [4], Hybrid TTN-MERA [5], Tensor Ring VQC [6], SQNN [7], and QF-hNet-BN [8] on binary classification tasks using the MNIST dataset.

Model	Classes	Qubits	Test Accuracy
QTN-VQC	0, 1	12	98.60
Hybrid TTN-MERA	0, 1	8	99.87 ± 0.02
Tensor Ring VQC	0, 1	4	99.30
CNN-QNL-Net [Ours]	0, 1	4	99.96 ± 0.03
SQNN	3, 6	64	97.47
QF-hNet-BN	3, 6	12	98.27
CNN-QNL-Net [Ours]	3, 6	4	99.94 ± 0.02

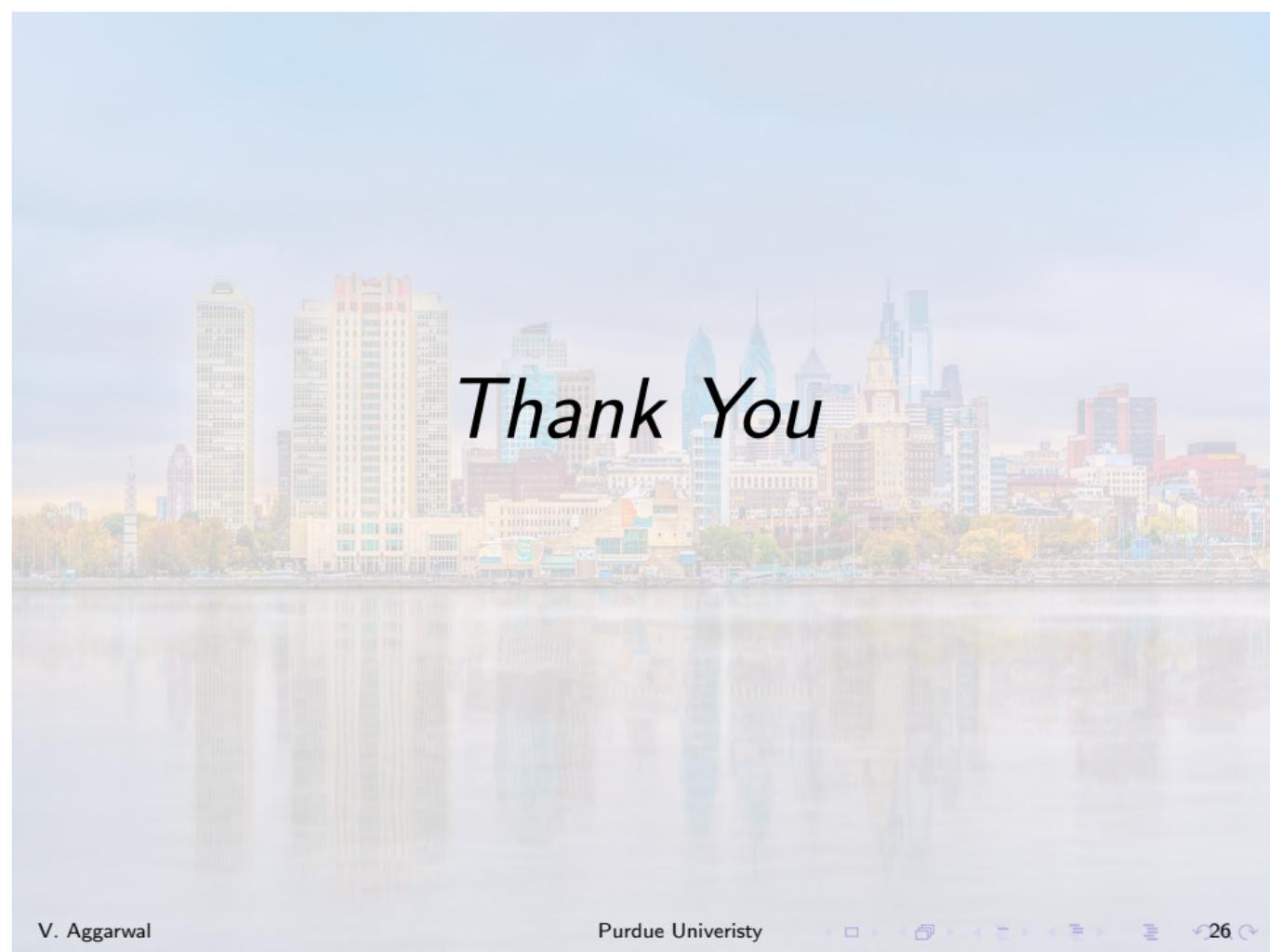
Discussions and Future Works

- Our proposed QNL-Net shows promise in advancing accuracy and efficiency for image classification tasks.
- The proposed QN-Net leverages quantum entanglement as a key advantage.
- However, our QNL-Net faces limitations in multi-class classification and efficiency with larger, complex datasets.
- Investigating the integration of more efficient quantum encoding strategies may further enhance performance..

Funding Organizations

References

- [1] X. Wang, R. Girshick, A. Gupta and K. He, "Non-local Neural Networks," *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA*, pp. 7794–7803, 2018, doi: 10.1109/CVPR.2018.00813.
- [2] N. Ye, K. Feng and S. Lin, "Local-non-local complementary learning network for 3D point cloud analysis," *Sci. Rep.*, vol. 15, no. 480, 2025, doi: <https://doi.org/10.1038/s41598-024-84248-9>.
- [3] S. Gupta, D. Konar, and V. Aggarwal, "A Scalable Quantum Non-local Neural Network for Image Classification," *arXiv*, 2024, doi: <https://arxiv.org/abs/2407.18906>.
- [4] J. Qi, Chao-Han. Yang, and Pin-Yu. Chen, "QTN-VQC: An end-to-end learning framework for quantum neural networks," *Physica Scripta*, vol. 99, no. 1, pp. 015111, 2023, doi: 10.1088/1402-4896/ad14d6.
- [5] E. Grant, Edward, M. Benedetti, and S. Cao, and *et al.*, "Hierarchical quantum classifiers," *npj Quantum Information*, vol. 4, no. 1, pp. 65, 2018, doi: <https://doi.org/10.1038/s41534-018-0116-9>.
- [6] D. Peddireddy, V. Bansal, Z. Jacob, and V. Aggarwal, "Tensor Ring Parametrized Variational Quantum Circuits for Large Scale Quantum Machine Learning," *Applied Soft Computing*, vol. 141, 2023, no. 110308, doi:<https://doi.org/10.1016/j.asoc.2023.110308>.
- [7] J. Wu, Z. Tao, and Q. Li, "Scalable quantum neural networks for classification," *2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA*, , pp. 38–48, 2022, doi: 10.1109/QCE53715.2022.00022.
- [8] W. Jiang, J. Xiong, and Y. Shi, "A co-design framework of neural networks and quantum circuits towards quantum advantage," *Nature Comm.*, vol. 12, no. 1, pp. 579, 2021, doi: <https://doi.org/10.1038/s41467-020-20729-5>.

A photograph of the Philadelphia skyline across a body of water. The city's iconic skyscrapers, including the One Liberty Place and Two Liberty Place towers, are visible against a clear blue sky. The water in the foreground is slightly choppy. Overlaid on the center of the image is the text "Thank You" in a large, black, serif font.

Thank You