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Introduction to Non-Local Operations in Neural Networks

Non-local operations enable the capture of long-range dependencies
through weighted sums of features across the input1.

It surpasses the constraints of traditional convolution operations that
focus solely on local neighborhoods.

Figure 1: A spacetime non-local operation in a neural network trained for video classification in Kinetics [1].

Non-local operations often require computing pairwise relationships
between all elements in a feature set.
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Limitations of Non-Local Operations

Non-local operations leads to high computational and memory
demands2.

Figure 2: The schematic diagram of Local and Non-Local feature extraction [2].

Hence, scaling non-local neural networks to large-scale problems can
be challenging.

Difficulty in capturing global dependencies efficiently without
incurring massive memory costs.
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Problem Statement: Key Questions?

Can we design a scalable hybrid quantum-classical model that
efficiently captures non-local dependencies?
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Figure 3: The proposed hybrid classical-quantum Quantum-enhanced Neural Network with Non-local connections
(QNL-Net)3 frameworks comprises: (a) CNN-QNL-Net (b) PCA-QNL-Net (c) QNL-Net (d) Post-QNL-Net Classical Comp.

How can quantum entanglement be leveraged to perform non-local
operations more efficiently than classical methods?
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Quantum-enhanced Non-Local Neural Network

QNL-Net: A hybrid quantum-classical model3 that leverages quantum
entanglement for non-local feature interactions.

MeasurementEncoder

Figure 4: Our Quantum-enhanced Non-local Neural Network (QNL-Net)3 comprises a four-qubit circuit composed of
three parts: (i) Encoder: To encode classical data into quantum states. (ii) Variational Quantum Circuit (VQC): classically
trainable quantum circuit. (iii) Measurement: the circuit is measured at qubit 0 in the Pauli-Z basis.

Encoding classical data, X = [y0, y1, · · · , yn−1] ∈ Rn into quantum
space: |ψΦ⟩ = (

⊗n
k=1 P(λk)H

⊗n)r |X ⟩
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QNL-Net: Variational Quantum Circuits

The encoder and the VQC ansatz have r and D repetitions
respectively.

The Encoder has 4r trainable parameters and the VQC has 5D
trainable parameters (for n = 4 input qubits).

Ansatz-0 Ansatz-1 Ansatz-2

Figure 5: The three ansatzes used as the Variational Quantum Circuits (VQC) in our QNL-Net using CX gates (CNOT) are:

cyclic pattern (Ansatz-0), reverse linear chain (Ansatz-1), and a mixed pattern (Ansatz-2)3.
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QNL-Net: Simulation Results

Our QNL-Net has been implemented using the EstimatorQNN
module of Qiskit ML 0.7.2 and Qiskit 1.1.0.

Figure 6: Training loss convergence and test accuracy plots for the CNN-QNL-Net and PCA-QNL-Net models for the three
ansatzes with one feature map repetition (r = 1) and one ansatz repetition (D = 1) on MNIST and CIFAR-10 datasets.
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QNL-Net: Simulation Results

Table 1: Performance of the proposed QNL-Net model on binary classification tasks across datasets: MNIST digits 0 and 1 and
CIFAR-10 classes 2 (bird) and 8 (ship).

Dataset Ansatz Model Learning Rate Train Accuracy Test Accuracy

0 CNN-QNL-Net 1 × 10−4 99.97 ± 0.02 99.96 ± 0.03

1 CNN-QNL-Net 1 × 10−4 99.96 ± 0.02 99.95 ± 0.02

MNIST 2 CNN-QNL-Net 1 × 10−4 99.96 ± 0.03 99.95 ± 0.04

(0, 1) 0 PCA-QNL-Net 1.5 × 10−4 99.65 ± 0.17 99.54 ± 0.16

1 PCA-QNL-Net 1.5 × 10−4 99.24 ± 0.19 99.18 ± 0.34

2 PCA-QNL-Net 1.5 × 10−4 99.67 ± 0.23 99.59 ± 0.21

0 CNN-QNL-Net 3 × 10−4 94.20 ± 0.77 93.54 ± 0.66

1 CNN-QNL-Net 3 × 10−4 94.13 ± 0.45 93.98 ± 0.37

CIFAR-10 2 CNN-QNL-Net 3 × 10−4 94.21 ± 0.32 93.76 ± 0.14

(2, 8) 0 PCA-QNL-Net 4 × 10−4 81.94 ± 1.51 81.16 ± 1.09

1 PCA-QNL-Net 4 × 10−4 81.79 ± 0.34 80.95 ± 0.35

2 PCA-QNL-Net 4 × 10−4 81.67 ± 0.73 80.86 ± 0.74

Table 2: Performance of the QNL-Net model compared with QTN-VQC [4], Hybrid TTN-MERA [5], Tensor Ring VQC [6],
SQNN [7], and QF-hNet-BN [8] on binary classification tasks using the MNIST dataset.

Model Classes Qubits Test Accuracy
QTN-VQC 0, 1 12 98.60
Hybrid TTN-MERA 0, 1 8 99.87 ± 0.02
Tensor Ring VQC 0, 1 4 99.30
CNN-QNL-Net [Ours] 0, 1 4 99.96 ± 0.03
SQNN 3, 6 64 97.47
QF-hNet-BN 3, 6 12 98.27
CNN-QNL-Net [Ours] 3, 6 4 99.94 ± 0.02



Discussions and Future Works

Our proposed QNL-Net shows promise in advancing accuracy and
efficiency for image classification tasks.

The proposed QN-Net leverages quantum entanglement as a key
advantage.

However, our QNL-Net faces limitations in multi-class classification
and efficiency with larger, complex datasets.

Investigating the integration of more efficient quantum encoding
strategies may further enhance performance..
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