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Introduction to Quantum Search Algorithms

Grover’s quantum Search (GS) algorithm1 is enabling quantum
computers to perform a database search.

It quadratically outperform their classical counterparts with only
O(

√
N) evaluations2.

Figure 1: Grover’s Iteration.

However, classical GS is computationally expensive with an increase in
the number of qubits or circuit depth.

1
Lov K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical Review Letters, vol. 79, no.

2, 1997, doi: https://doi.org/10.1103/PhysRevLett.79.325.
2
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and Weaknesses of Quantum Computing,” SIAM

Journal on Computing, vol. 26, no. 5, pp. 1510–1523, 1997, doi: https://doi.org/10.1137/S0097539796300933.
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Introduction to Partial Grover Search Algorithms

The search often focuses on a block containing marked state than the
entire dataset-Quantum Partial Search Algorithm (QPSA)3.

Grover and Radhakrishnan (GRK)4 proposed a faster QPSA using the
same Oracle as the Grover algorithm.

A database with N items is divided into b identically sized blocks:

B = N/b (1)

In QPSA, approximately π
4 (1− c(b))

√
N searches are required to

locate the target block4 [c(b) is a correction factor].

3
V. E. Korepin, and Lov K. Grover, “Simple Algorithm for Partial Quantum Search,” Quantum Inf. Proc., vol. 5, pp. 5–10,

2006, doi: https://doi.org/10.1007/s11128-005-0004-z.
4
Lov K. Grover, and J. Radhakrishnan, “Is partial quantum search of a database any easier?,” Proc. of the 7th Annual

ACM Symposium on Parallelism in Algorithms and Architectures, pp. 186–194, 2005, doi: 10.1145/1073970.1073997.

https://doi.org/10.1007/s11128-005-0004-z
10.1145/1073970.1073997
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Introduction to Partial Grover Search Algorithms

GRK partial Grover’s search randomly select (b − 1) blocks and apply
GS iterations N (1− 1

b ) inside the selected blocks.

Figure 2: Partial Grover search4 in a database of twelve items (A) Start with the uniform superposition of the twelve states
(B) Invert the amplitude of the target state (C) Invert about the average in each of the three blocks
(D) Invert the amplitude of the target state again (E) Invert about the global average.

This would need π
4

√
B(b − 1) = π

4

√
N
√

b−1
b = π

4

√
N
√

1− 1
b

iterations.
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Limitation of Partial Grover’s Search Algorithms

Of late, Guo et al. introduced an improved version of QPSA using
Depth-First Search (DFS) referred to as DFGS5.

However, despite its potential, QPSA have been limited in
implementation due to their complex formulation.

Our work provides a Bi-Directional Grover Search (BDGS) algorithm6,
which draws inspiration from the QPSA and DFGS.

On parallelization, our novel Bi-directional approach requires
π

4
√
2

√
N (1−

√
1

br/2k
) iterations (Here, N = 2r , and k = ⌈log2 b⌉)

5
H. Guo, “Depth-First Grover Search Algorithm on Hybrid Quantum-Classical Computer,” arXiv, 2002, doi:https://doi.

org/10.48550/arXiv.2210.04664.
6
D. Konar, Z. Hafeez, and V. Aggarwal, “A Bi-directional Quantum Search Algorithm,” arXiv, 2024, doi: https://arxiv.

org/abs/2404.15616.

https://doi.org/10.48550/arXiv.2210.04664
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Bi-directional Grover Search Algorithm

A novel approach combining Bi-directional search (BDS) and Partial
Grover Search (PGS) algorithms7.

Figure 3: Quantum Circuit schematic for Bi-directional Grover’s Quantum Search (Uω and Us are oracle and diffuser).

7
R. E. Korf, “Search Techniques,” Encyclopedia of Information Systems, pp. 31–43, 2003, doi: https://doi.org/10.

1016/B0-12-227240-4/00155-6.

https://doi.org/10.1016/B0-12-227240-4/00155-6
https://doi.org/10.1016/B0-12-227240-4/00155-6


Bi-directional Grover Search Algorithm

The proposed BDGS algorithm incorporates PGS7 to determine the
next k = ⌈log2 b⌉ bits in forward and backward search in BDGS as

|X0X1 · · ·XiXi+1︸ ︷︷ ︸
Found

□□︸︷︷︸
Next k

· · ·⟩ PGS−−−−→
Forward

|X0X1 · · ·XiXi+1︸ ︷︷ ︸
Found

Xi+2Xi+3︸ ︷︷ ︸
Next k

· · ·⟩

|· · · □□︸︷︷︸
Prev . k

XiXi+1 · · ·Xr−1Xr︸ ︷︷ ︸
Found

⟩ PGS−−−−−→
Backward

|· · ·Xi−2Xi−1︸ ︷︷ ︸
Prev . k

XiXi+1 · · ·Xr−1Xr︸ ︷︷ ︸
Found

⟩

(2)
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Bi-directional Grover Search Algorithm

The proposed BDGS steps with b = 4 denote dividing the database
into four parts for every layer with a PGS to get the next two bits.

The first four bits are encoded by the auxiliary qubits, which have the
values A1 = 0110 · · · and A2 = 1111 · · ·.
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BDGS: Computational Complexity Analysis

We implemented the Oracle and Diffuser searching for k = 2 qubits.

Figure 4: Design of Oracle for the proposed Bi-directional Grover Search for b = 4

We deduce that the average number of oracle calls of BDGS is
π

4
√
2

√
N (1−

√
1

br/2k
).
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BDGS: Simulation Results

We have conducted various trials on quantum simulation on a qubit
space ranging from 4 to 20 qubits on the Qiskit Aer simulator.

(a) (b)

Figure 5: Plot for (a) Runtime (s) vs. #Qubit (b) #Iteration vs. #Qubit search space for BDGS, DFGS [5], and standard GS.

With 1024 shots with each execution on 8-cores systems with a
maximum frequency of 3.5 GHz and 8-GB RAM.



BDGS: Simulation Results

Table 1: Comparative performance analysis of the proposed Bi-directional Grover’s Search (BDGS), standard Grover’s Search
(GS) [8], and Depth-First Grover’s Search (DFGS) [5] with 1024 shots

GS DFGS BDGS
Qubits Trial Acc. Time(s) Acc. Time(s) Acc. Time(s)

1 95.3 0.00267 100 0.00174 100 0.00117
2 96.6 0.00245 100 0.00197 100 0.00113

4 3 96.2 0.00222 100 0.00174 100 0.00108
4 96.7 0.00263 100 0.00251 100 0.00104
5 96.3 0.00300 100 0.00135 100 0.00104
Avg. 96.02 0.00259 100 0.00186 100 0.00109
1 100 0.0148 100 0.00255 100 0.00147
2 100 0.0127 100 0.00301 100 0.00165

8 3 100 0.0131 100 0.00290 100 0.00170
4 100 0.0123 100 0.00344 100 0.00152
5 100 0.0133 100 0.00332 100 0.00163
Avg. 100 0.0132 100 0.00304 100 0.00159
1 100 0.206 100 0.00676 100 0.00224
2 100 0.152 100 0.00737 100 0.00256

16 3 100 0.146 100 0.00617 100 0.00242
4 100 0.150 100 0.00623 100 0.00248
5 100 0.149 100 0.00589 100 0.00245
Avg. 100 0.161 100 0.00645 100 0.00243
1 100 0.810 100 0.00708 100 0.00284
2 100 0.755 100 0.00705 100 0.00284

20 3 100 0.774 100 0.00799 100 0.00283
4 100 0.780 100 0.00833 100 0.00261
5 100 0.767 100 0.00786 100 0.00274
Avg. 100 0.781 100 0.00766 100 0.00277



Discussions and Conclusions

A novel attempt has been made to enable the Bi-directional
implementations of Partial Grover’s Search (PGS).

The number of iterations for a single solution search for our BDGS,

DFGS [5], and PGS [4] is evaluated as
√
N

(
1− d

√
1

b
r
dk

)
with

constraint d log d < r
2 (d is the number of equal segments on r),

√
N

(
1−

√
1
br

)
, and π

4

√
N
√

1− 1
b , respectively.

We have shown that if b is large, k = log2 b is also large and r
dk is

small for large d and hence, for some r ⩾
√
dk,(

1− d
√

1

b
r
dk

)
⩽

(
1−

√
1
br

)
⩽

√
1− 1

b

The proposed BDGS has the potential to extend to a multi-solution
search in a hybrid quantum-classical setting.
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