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Transformer-based Architecture:

Processes images as sequences of patches instead of convolutional
layers.
Uses Self-Attention Mechanism to capture long-range dependencies.

Pipeline:

Patch Extraction & Embedding: Jet images are split into non-
overlapping patches.

Multi-Head Self-Attention (MHSA). Computes attention scores
between patches.

Feedforward Network (FFN): Processes refined patch embeddings for
classification.

Classification Head: Uses auxiliary jet features (transverse momentum
pT and effective mass mO0).
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Reconfigurable Beam Splitter (RBS) Gates:

e Fundamental quantum gate wused for
orthogonal transformations.

e |Implemented using Hadamard (H) gates,
Controlled-Z (CZ) gates, and single-qubit
Ry(£0/2) rotations.

Vector Loading Circuits:

e Encode classical data into quantum states
using unary amplitude encoding.

e Feature vector maoped to auantum state:
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Quantum Pyramid Circuits: CHB N G

e Implements structured orthogonal Iau Ias Ia»
transformations in quantum attention layers. Im I&“

e Uses a pyramid of RBS gates to control Ia?
qua ntum mfotmatl on i OW . Example of a Pyramid Circuit

Quantum Attention Coefficient Computation:

e Computes overlap between transformed = N =
query and key vectors using quantum —{ T
measurement. . . Circuit to compute an attention

e Enables all attention computations by coefficient

forming the attention map.



Dataset: CMS O pen Data, with three Validation Loss Comparison

subsets of 100,000 jet images each, 125x125 % — Cambo (et Shd)
resolution, Tracks, ECAL, HCAL channels. E b
Training & Evaluation: 70% training, 15% 3
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DEViation): Validation AUC Comparison
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Key Takeaways:

e QViTs with QONNs maintain robust classification performance.

e Quantum orthogonal transformations enhance stability and
computational efficiency.

Future Directions:

e Hardware Implementation: Test QVIT on real quantum devices.

e Quantum Particle Transformer for Jet Tagging: Investigate a
quantum-based approach for jet tagging with a Particle Transformer.
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