

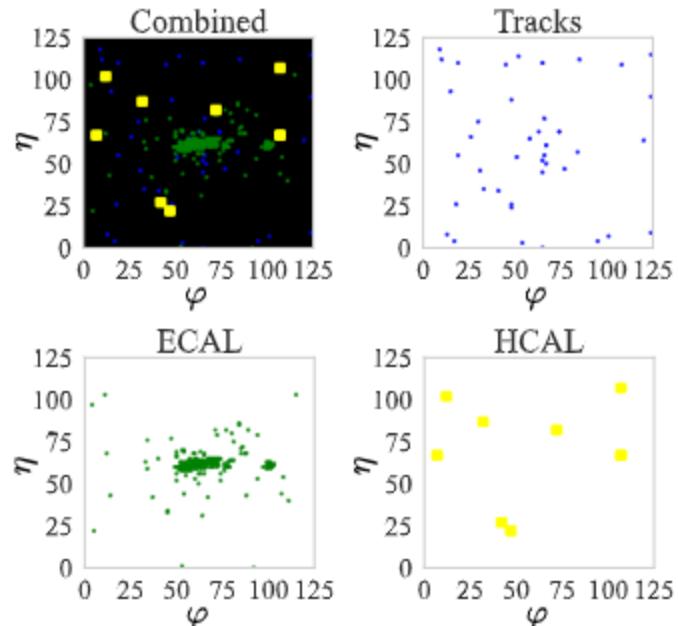
Quantum Attention for Vision Transformers in High Energy Physics

Alessandro Tesi Sergei Gleyzer Konstantin T. Matchev
Katia Matcheva Kyoungchul Kong Tom Magorsch
Gopal Ramesh Dahale



Introduction

- The **High Luminosity Large Hadron Collider (HL-LHC)** will generate vast amounts of data.
- **Quantum Machine Learning (QML)** and **Variational Quantum Algorithms (VQAs)** offer advantages in handling complex data.
- **Quantum Vision Transformers (QViTs):** Integrate quantum circuits into **Vision Transformers (ViTs)** frameworks to improve efficiency and stability.



Methodology

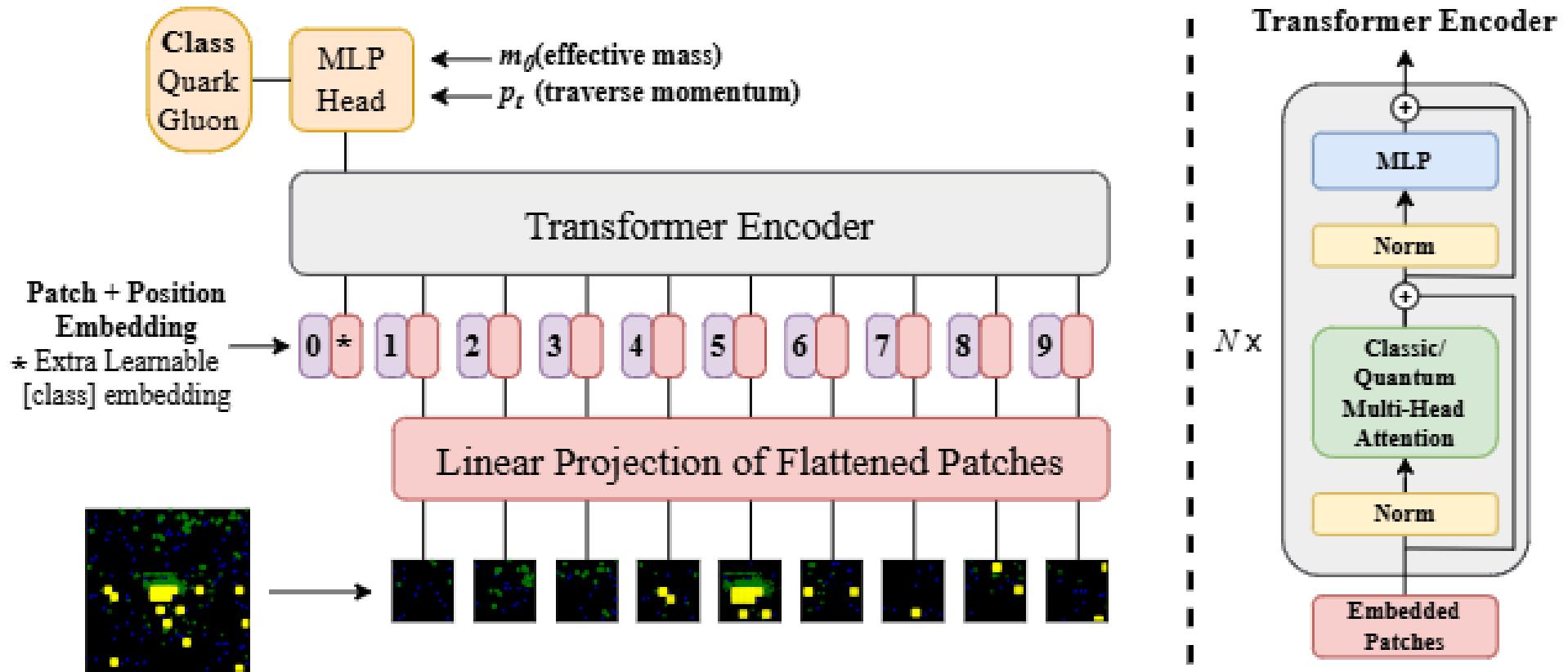
Transformer-based Architecture:

- Processes images as sequences of patches instead of convolutional layers.
- Uses Self-Attention Mechanism to capture long-range dependencies.

Pipeline:

- **Patch Extraction & Embedding:** Jet images are split into non-overlapping patches.
- **Multi-Head Self-Attention (MHSA):** Computes attention scores between patches.
- **Feedforward Network (FFN):** Processes refined patch embeddings for classification.
- **Classification Head:** Uses auxiliary jet features (transverse momentum pT and effective mass m_0).

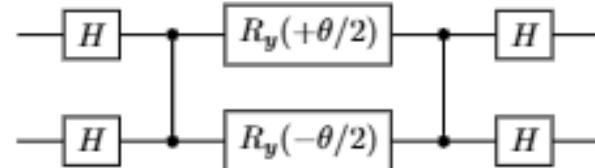
Methodology



Methodology

Reconfigurable Beam Splitter (RBS) Gates:

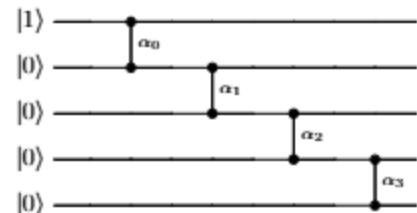
- Fundamental quantum gate used for orthogonal transformations.
- Implemented using Hadamard (H) gates, Controlled-Z (CZ) gates, and single-qubit $R_y(\pm\theta/2)$ rotations.



Decomposition of the $RBS(\theta)$ gate.

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 \\ 0 & -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Rotation matrix applied in the two-dimensional subspace:



Vector loading circuit

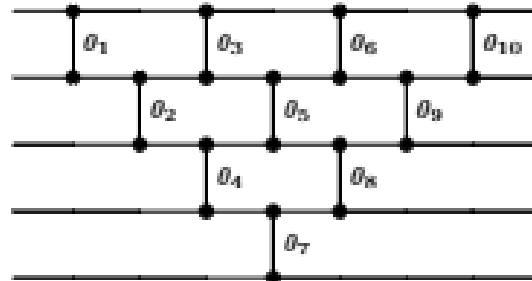
Vector Loading Circuits:

- Encode classical data into quantum states using unary amplitude encoding.
- Feature vector mapped to quantum state:
$$|\psi\rangle = x_0|10\dots0\rangle + x_1|01\dots0\rangle + \dots + x_n|0\dots01\rangle$$

Methodology

Quantum Pyramid Circuits:

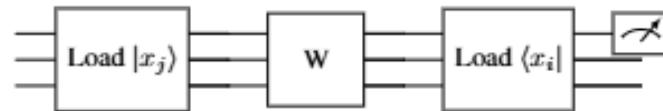
- Implements structured orthogonal transformations in quantum attention layers.
- Uses a pyramid of RBS gates to control quantum information flow.



Example of a Pyramid Circuit

Quantum Attention Coefficient Computation:

- Computes overlap between transformed query and key vectors using quantum measurement.
- Enables all attention computations by forming the attention map.



Circuit to compute an attention coefficient

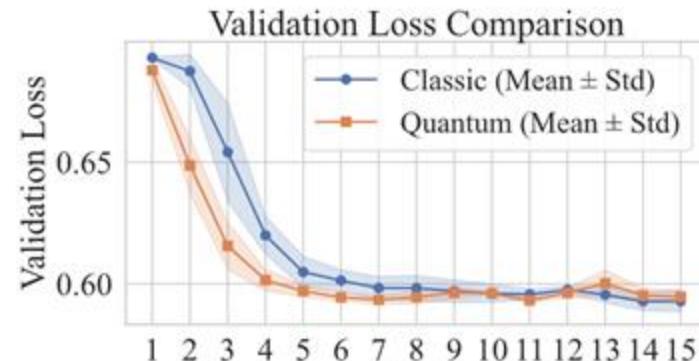
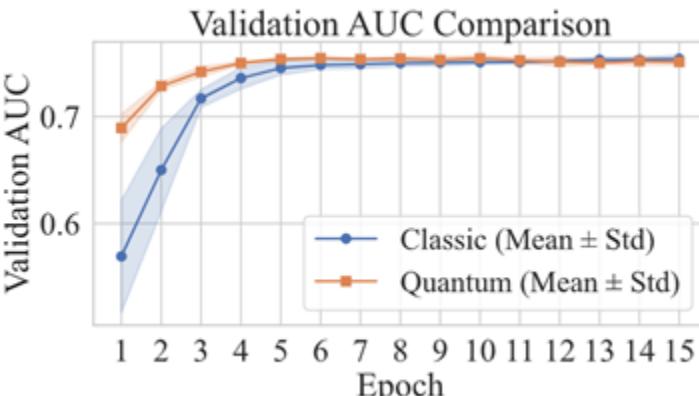
Results

Dataset: CMS Open Data, with three subsets of 100,000 jet images each, 125x125 resolution, Tracks, ECAL, HCAL channels.

Training & Evaluation: 70% training, 15% validation, 15% test split.

Performance Metrics (Mean \pm Standard Deviation):

- **Validation AUC:**
 - QViT: **0.749 ± 0.005**
 - Classical ViT: **0.751 ± 0.005**
- **Test AUC:**
 - QViT: **0.750 ± 0.006**
 - Classical ViT: **0.752 ± 0.006**



Conclusions

Key Takeaways:

- QViTs with QONNs maintain **robust classification performance**.
- **Quantum orthogonal transformations** enhance stability and computational efficiency.

Future Directions:

- **Hardware Implementation:** Test QViT on real quantum devices.
- **Quantum Particle Transformer for Jet Tagging:** Investigate a quantum-based approach for jet tagging with a Particle Transformer.