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Introduction

● The High Luminosity Large Hadron
Collider (HL-LHC) will generate vast
amounts of data.

● Quantum Machine Learning (QML) and
Variational Quantum Algorithms (VQAs)
offer advantages in handling complex data.

● Quantum Vision Transformers (QViTs):
Integrate quantum circuits into Vision
Transformers (ViTs) frameworks to
improve efficiency and stability.



Methodology

Transformer-based Architecture:
● Processes images as sequences of patches instead of convolutional

layers.
● Uses Self-Attention Mechanism to capture long-range dependencies.

Pipeline:
● Patch Extraction & Embedding: Jet images are split into non-

overlapping patches.
● Multi-Head Self-Attention (MHSA): Computes attention scores

between patches.
● Feedforward Network (FFN): Processes refined patch embeddings for

classification.
● Classification Head: Uses auxiliary jet features (transverse momentum

pT and effective mass m0).
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Methodology

Reconfigurable Beam Splitter (RBS) Gates:
● Fundamental quantum gate used for

orthogonal transformations.
● Implemented using Hadamard (H) gates,

Controlled-Z (CZ) gates, and single-qubit
Ry(±θ/2) rotations.

Vector Loading Circuits:
● Encode classical data into quantum states

using unary amplitude encoding.
● Feature vector mapped to quantum state:

Rotation matrix applied in the two-
dimensional subspace:

Decomposition of the RBS(θ) gate.

Vector loading circuit



Methodology

Quantum Pyramid Circuits:
● Implements structured orthogonal

transformations in quantum attention layers.
● Uses a pyramid of RBS gates to control

quantum information flow.
Quantum Attention Coefficient Computation:
● Computes overlap between transformed

query and key vectors using quantum
measurement.

● Enables all attention computations by 

forming the attention map.

Example of a Pyramid Circuit

Circuit to compute an attention 
coefficient



Results

Dataset: CMS Open Data, with three
subsets of 100,000 jet images each, 125x125
resolution, Tracks, ECAL, HCAL channels.
Training & Evaluation: 70% training, 15%
validation, 15% test split.
Performance Metrics (Mean ± Standard
Deviation):
● Validation AUC:

○ QViT: 0.749 ± 0.005
○ Classical ViT: 0.751 ± 0.005

● Test AUC:
○ QViT: 0.750 ± 0.006
○ Classical ViT: 0.752 ± 0.006



Conclusions

Key Takeaways:
● QViTs with QONNs maintain robust classification performance.
● Quantum orthogonal transformations enhance stability and

computational efficiency.
Future Directions:
● Hardware Implementation: Test QViT on real quantum devices.
● Quantum Particle Transformer for Jet Tagging: Investigate a

quantum-based approach for jet tagging with a Particle Transformer.
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