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● Quantum machine learning - rapidly advancing due to possibilities 
for high speedups and low resource usage

● Multiple studies on QML for HEP applications – particle track 
reconstruction, jet generation, etc.

● Jet tagging – especially important at CERN to efficiently identify 
useful data and process it in real time

● Graph networks are well suited for jet tagging due to the sparse, 
irregular and heterogenous nature of the data

Introduction & Motivation
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Brief about GNN (GCN)



➔ Learning Node Embedding

➔ Neighborhood aggregation

➔ Classification/Prediction

➔ Node level

➔ Edge level

➔ Graph level

GCN - Three basic steps

Graph Convolution Layer
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Node Updation/ 
Transformation
Learn better node embeddings 
using Neural Network

Source

SourceInput size = D
AAA Lateef, Sufyan Al-Janabi, and Belal Al-Khateeb. "Survey on intrusion detection systems based on deep learning." Periodicals of Engineering and Natural Sciences 7, no. 3 (2019). 
Hussein, Omar. “Graph Neural Networks Series: Part 3: Node Embedding.” Medium, May 16, 2023. https://medium.com/the-modern-scientist/graph-neural-networks-series-part-3-node-embedding-36613cc967d5. 

https://medium.com/the-modern-scientist/graph-neural-networks-series-part-3-node-embedding-36613cc967d5
https://www.researchgate.net/publication/335856901_Survey_on_Intrusion_Detection_Systems_based_on_Deep_Learning
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Neighborhood 
Aggregation
Apply a function (sum/max/min) 
to the embeddings of neighbors 
for every node in graph

Source
Scales as O(ND)

Jure Leskovec, “Stanford CS224W: Graph Neural Networks”, Slides at Stanford University, Stanford, CA, January 10, 2024

https://web.stanford.edu/class/cs224w/slides/03-GNN1.pdf
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Classification/
Prediction
Neural Network - predicts graph 
label from learned embeddings

Aggregate node embeddings to 
get graph embedding

Prediction head :
• Global Max/Average over all 

vertices in Graph
• Represents Graph Embedding

Source

Jure Leskovec, “Stanford CS224W: Graph Neural Networks”, Slides at Stanford University, Stanford, CA, January 10, 2024

https://web.stanford.edu/class/cs224w/slides/05-GNN3.pdf


For a graph with N nodes and D features for each node

➔ Node Embedding Updation - input size is D

➔ Neighborhood aggregation - input size is O(ND)

➔ Classification/Prediction - input size is D

GCN - Analysis (Graph classification)

Aggregation/Message passing using quantum circuit is not scalable (NISQ)



Assign importance to neighbors during aggregation – learnable
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Graph Attention

Can we also learn the jet graph structure 
dynamically through attention?

Attention parameters 𝛼*! - learnable using quantum neural network 
with 2*D qubits 



Quantum GNN Proposals



GCN Pseudocode
𝑃𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑑𝑒:

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑔𝑟𝑎𝑝ℎ:
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒:
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠¬𝑁𝑁 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠¬𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝐺𝑟𝑎𝑝ℎ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔¬𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛¬𝑁𝑁(𝐺𝑟𝑎𝑝ℎ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔)

Graph Convolution 
layer



Proposed Approach
𝑃𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑑𝑒:

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑗𝑒𝑡:
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒:
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠¬𝑁𝑁 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠¬𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝐺𝑟𝑎𝑝ℎ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔¬𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛¬𝑁𝑁(𝐺𝑟𝑎𝑝ℎ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔)

Quantum

Quantum

Classical
Classical



Quantum GNN 
with Classical 
Message Passing 
● Quantum Node Updation –

D qubits
● Classical Aggregation
● Quantum Classification –

D qubits
Jure Leskovec, “Stanford CS224W: Graph Neural Networks”, Slides at Stanford University, Stanford, CA, January 10, 2024



● Scalable – only D qubits per QNN, the number of node features
○ Scales well for larger graph sizes – just run the circuit more times

● Splitting up operations using multiple QNNs - allows applying non-
linear activations to the intermediate QNN outputs. 

● No classical NN layers required (for reasonable feature vector size D)

Pros of the Proposed Approach



Experiments and Results



Dataset and pre-processing
● Pythia8 Quark and Gluon jet dataset [3]
● Select top 3 particles per jet (ordered by transverse momentum)
● Extract kinematic features - transverse mass, energy and 

cartesian momentum using Particle package
● Remove 0-padded particles and normalize the data
● Construct Graphs – edges determined by Euclidean distance 

metric in the (rapidity, azimuthal angle) plane



Results
S.No Model Train 

loss
Val. 
loss

Train 
ACC

Val. 
ACC

Test 
AUC

1. Classical GCN 0.540 0.543 74 74 79.5

2. QCGCN (classical 
classifier)

0.550 0.559 73 73 79.0

3. QCGCN (MPS classifier) 0.549 0.554 73 73 79.0

4. QCGCN (TTN classifier) 0.554 0.555 73 72 79.0

With just 200 trainable parameters!



Data Analysis

Distribution of observed number of particles Number of particles/jet vs model performance



Results contd. 
S.No Model Train 

loss
Val loss Train 

ACC
Val 

ACC
Test 
AUC

1. All particles 0.480 0.478 78 78 85

2. 5 particles per jet 0.527 0.535 74 74 80

3. 5 particles per jet + 
#particles observed

0.4822 0.496 77 78 85

AUC consistent with 
using all particles!



Results contd. 
S.No Model Train 

loss
Val loss Train 

ACC
Val 

ACC
Test 
AUC

1. GAT 0.487 0.49 78 77 85.3

2. QCGCN with 
classical attention

0.494 0.503 76 77 84.0

3. QCGAT 0.502 0.508 77 77 84.2

Not much improvement 
with attention 



Summary
● Designed and developed Quantum-classical GCN for jet tagging
● Quantum models achieved similar performance as GCN with 

fewer parameters
● Adding #features to graph embedding improved AUC by 5% -

consistent with using all particles (150 particles as opposed to 5!)
● Naïve adoption of Graph attention, though promising, did not 

lead to improvements in performance To be explored!



QNN - Node Embedding Learner



QNN – Classifier

Matrix Product State (MPS) Classifier



QNN – Classifier

Tensor Tree Network (TTN) Classifier
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