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Introduction & Motivation

o Quantum machine learning - rapidly advancing due to possibilities
for high speedups and low resource usage

e Multiple studies on QML for HEP applications - particle track
reconstruction, jet generation, etc.

o Jet tagging - especially important at CERN to efficiently identify
useful data and process it in real time

o Graph networks are well suited for jet tagging due to the sparse,
irregular and heterogenous nature of the data
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Brief about GNN (GCN)



GCN - Three basic steps

» | Learning Node Embedding

> Graph Convolution Layer

- |Neighborhood aggregation

-» Classification/Prediction
- Node level
- Edge level

- Graph level
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GCN - Analysis (Graph classification)

For a graph with N nodes and D features for each node
-» Node Embedding Updation - input size is D
> Neighborhood aggregation - input size is O(ND)

» Classification/Prediction - input size is D

Aggregation/Message passing using quantum circuit is not scalable (NISQ)




Can we also learn the jet graph structure
—_— dynamically through attention?

Graph Attention

Assign importance to neighbors during aggregation - learnable
kpk—1 ky1rk k=1
JEN; JEN;
af; = softmax; (Ak kahﬁ‘_l, W"h}(_ll)

=

Attention parameters q;; - learnable using quantum neural network
with 2*D qubits



Quantum GNN Proposals



GCN Pseudocode

Pseudocode:
for every graph:
for every node:
features<—NN (features) Graph Convolution
features<—aggregate over neighbours layer

Graph embedding<aggregate all node features
prediction<—NN (Graph embedding)



Proposed Approach

Pseudocode:

for every jet:

for every particle:
features<—NN(features) > Quantum
features<—aggregate over neighbours >
Graph embedding<«aggregate all node features ——
prediction<—NN (Graph embedding) > Quantum




Quantum GNN
with Classical

Message Passing

e Quantum Node Updation -
D qubits

o Classical Aggregation

e Quantum Classification -
D qubits

(1) average messages
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Pros of the Proposed Approach

e Scalable - only D qubits per QNN, the number of node features

o Scales well for larger graph sizes - just run the circuit more times

o Splitting up operations using multiple QNNs - allows applying non-
linear activations to the intermediate QNN outputs.

e No classical NN layers required (for reasonable feature vector size D)



Experiments and Results



Dataset and pre-processing

o Pythia8 Quark and Gluon jet dataset [3]
o Select top 3 particles per jet (ordered by transverse momentum)

o Extract kinematic features - transverse mass, energy and
cartesian momentum using Particle package

e Remove O-padded particles and normalize the data

o Construct Graphs - edges determined by Euclidean distance
metric in the (rapidity, azimuthal angle) plane



With just 200 trainable parameters!

Train Train Val. Test

loss Ioss ACC ACC AUC

Classical GCN 0.540 0.543 79.5

2. QCGCN (classical 0.550 0.559 73 73 79.0
classifier)

3. QCGCN (MPS classifier) 0.549 0.554 73 73 79.0

4. QCGCN (TTN classifier) 0.554 0.555 73 72 79.0



Data Analysis
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AUC consistent with
using all particles!

Results contd.

Train | Valloss | Train \£] Test
loss ACC ACC AUC
All particles 0.480 0.478
2. 5 particles per jet 0.527 0.535 74 74 80

3. 5 particles perjet+ 04822 0.496 77 78

#particles observed



Not much improvement
with attention @

Results contd.

Train | Valloss | Train Val Test
loss ACC ACC AUC
0.487 0.49 85.3

2. QCGCN with 0.494 0.503 76 77 84.0
classical attention

3. QCGAT 0.502  0.508 77 77 84.2



Summary

o Designed and developed Quantum-classical GCN for jet tagging

e Quantum models achieved similar performance as GCN with
fewer parameters

o Adding #features to graph embedding improved AUC by 5% -
consistent with using all particles (150 particles as opposed to 5!)

o Naive adoption of Graph attention, though promising, did not
lead to improvements in performance To be explored!



QNN - Node Embedding Learner
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QNN - Classifier
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QNN - Classifier
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