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Introduction

HEP Challenge: Monte Carlo simulations are crucial but
computationally expensive.

GANSs in HEP: Generative Adversarial Networks have
shown promise in replicating complex distributions.

Why Quantum?: Potential for faster convergence, lower
resource usage, and learning complex distributions beyond
classical capabilities.
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PQC Quantum Generator Discriminator

Quantum Generator (PQC):
«Feature qubits + ancillary qubits.
«Parameterized Pauli-Y rotations + Control-Z entangling blocks.
«Outputs measurement probabilities mapped to pixel intensities.

Classical Discriminator:
A dense neural network classifying real vs. generated images.
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4 generators (each producing the same patch of the image in both channels), or a
single generator with 4 PQCs in parallel.

*Training on 512 images, batch size = 1

50 epochs, SGD optimizer, learning rates: 0.001 (generator), 0.005 (discriminator).




Results
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Metrics:
FID and RMSE both converge rapidly.
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Overlays of generated vs. real images show close
agreement in energy deposit patterns. LR ™ I S R R v




Results
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Conclusions

E Demonstrated feasibility of a hybrid QGAN for multi-
: channel jet image generation.

| A Captured realistic energy patterns in both ECAL and HCAL
’ simultaneously.




Next Steps

2o S

Scale up dataset size Test on real Extend to quark-
and resolution. quantum hardware initiated jets or
(noise, limited additional sub-

qubits). detectors.




Image preprocessing
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Image preprocessing
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Image preprocessing
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State Embedding and parametrized layers

State Parametrized Layers
Embedding N layers _
For a given sub-generator, the pre-measurement
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Non-Linear Transformation
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To introduce a non-linear transformation, we perform a partial measurement
on only some of the qubits in the system.

IT = (|0)(0[)*™

After this measurement, we trace out the ancillary subsystem A, obtaining the
reduced density matrix:
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Non-Linear Transformation
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After measurement and tracing out the ancillary qubits, we have a reduced
state p(z). To get the final output, we compute the probability of measuring
the remaining data qubits in different basis states:

g® = [P(0), B(1);= = ,P(2N‘N" —1)]




Post processing
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To scale the output so that it fits within the range needed for energy deposits
values, we divide by a factor
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Post-processing
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Therefore, the final image is given by:
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