

The 39th Annual AAAI Conference on Artificial Intelligence

FEBRUARY 25 – MARCH 4, 2025 | PHILADELPHIA,
PENNSYLVANIA, USA

Quantum Machine Learning Techniques for Network Intrusion in Software-Defined Networks

Joan Lo¹, José A. Lázaro¹, Josep R. Casas¹, Javier Ruiz-Hidalgo¹, Àlex Solé¹, Samael Sarmiento³, Adolfo Lerín⁴, Ricardo Martínez², Josep M. Fàbrega²

¹Universitat Politècnica de Catalunya – UPC, Barcelona, Spain

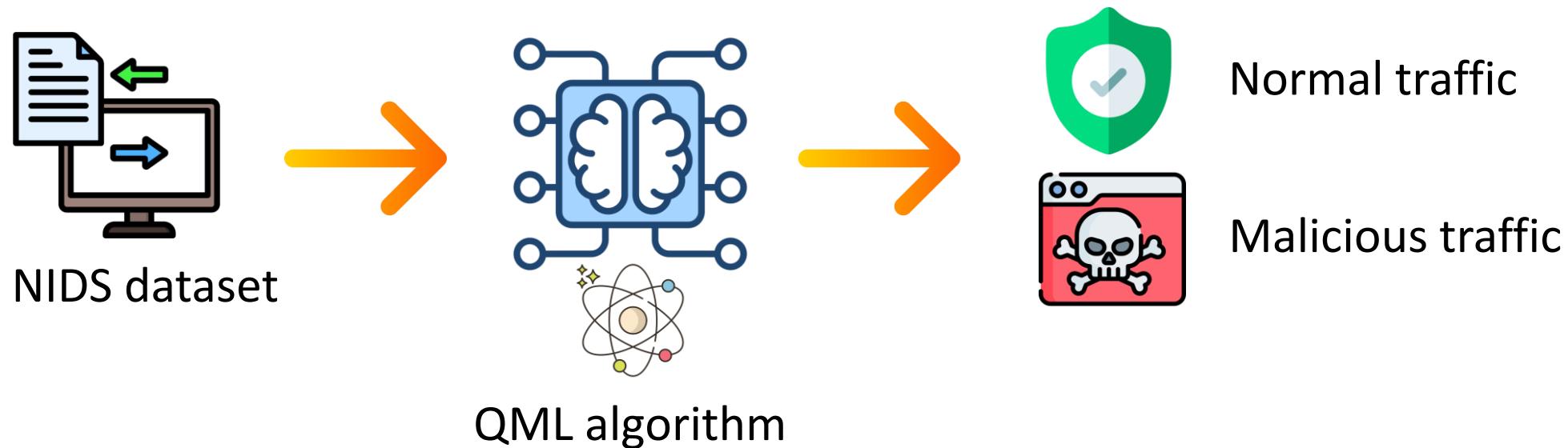
²Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain

³LuxQuanta Technologies S.L., Castelldefels, Spain

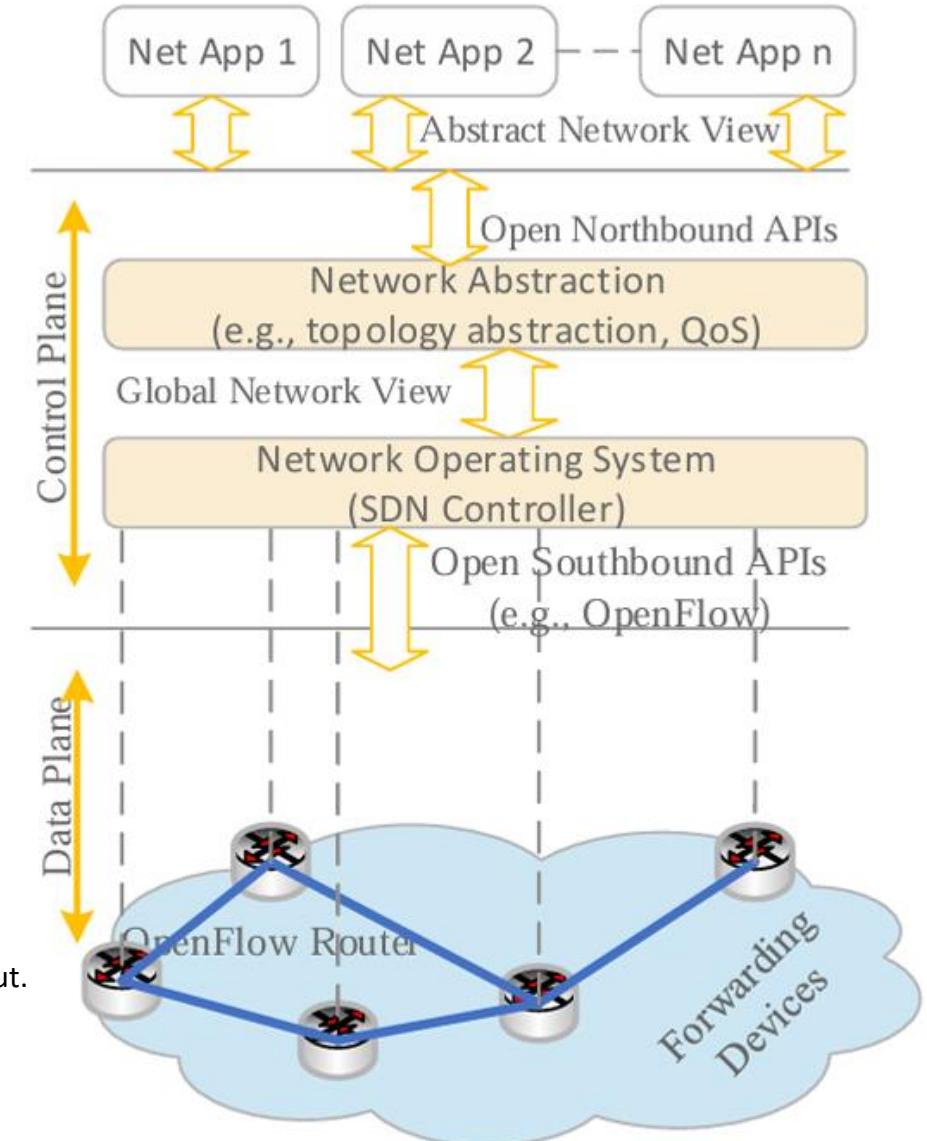
⁴CognitIAs, Madrid, Spain

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

- This work explores the application of **Quantum Machine Learning (QML)** algorithms for **Network Intrusion Detection Systems (NIDS)** in **Software-Defined Networks (SDN)**, comparing their performance with **classical machine learning methods**
- The objective is to classify network attacks from a NIDS dataset



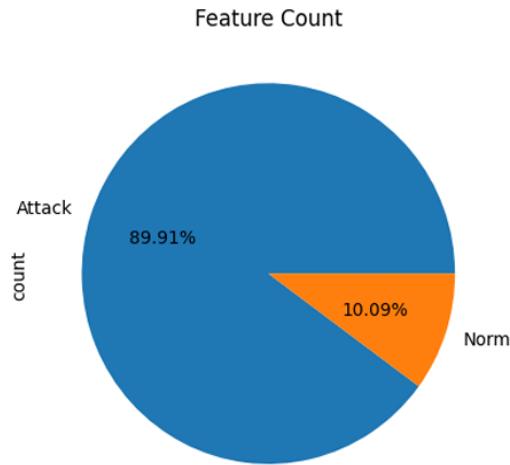
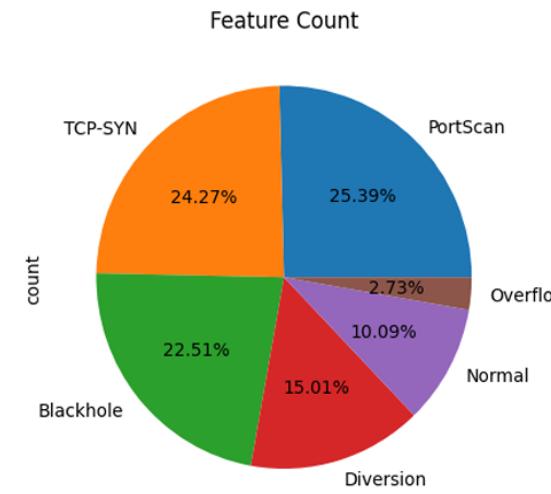
- Network traffic volumes and patterns increase every day → necessity of a **new SDN paradigm** (started to gain recognition in 2012)
- **OpenFlow** protocol paper¹ was published in 2008
- Classical Networks have **decentralized behavior**
- Software-Defined Networks have **centralized behavior**



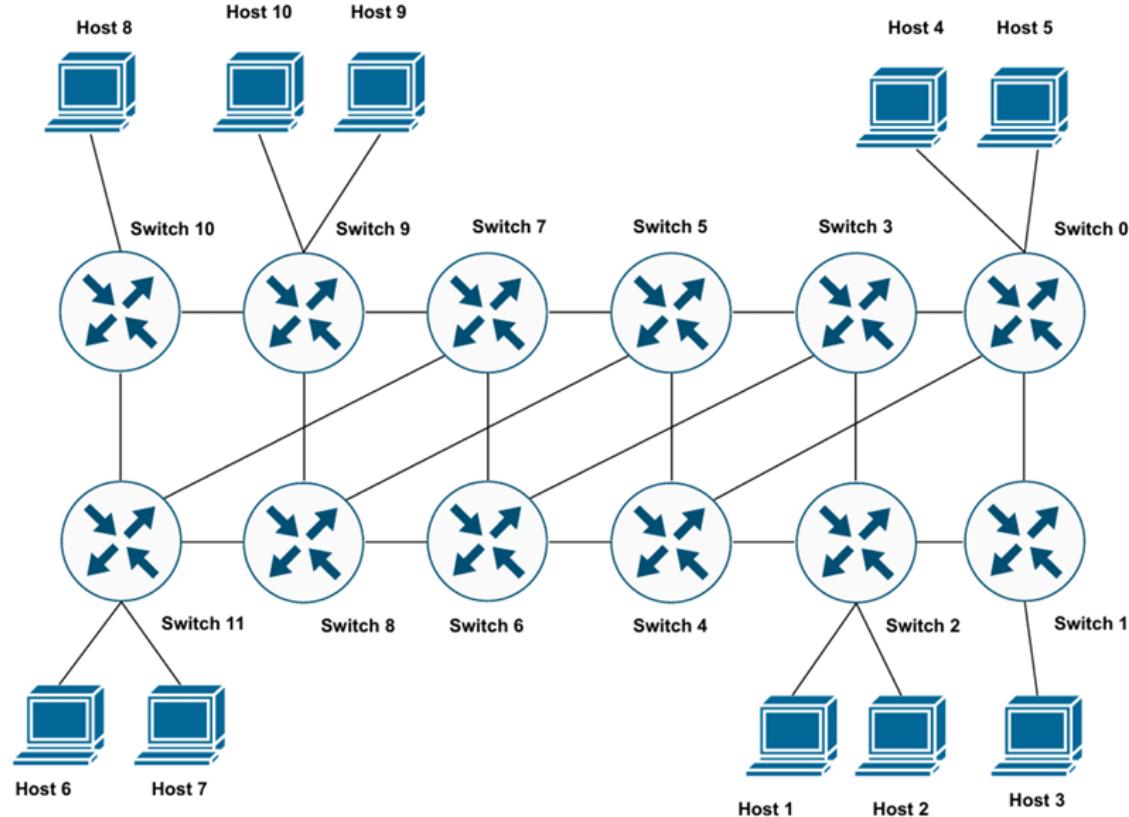
1: Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. "OpenFlow: enabling innovation in campus networks". *SIGCOMM Comput. Commun. Rev.* 38, 2 (April 2008), 69–74.

2: Image ref: Hakiri, Akram & Gokhale, et. al. (2014). "Software-Defined Networking: Challenges and research opportunities for Future".

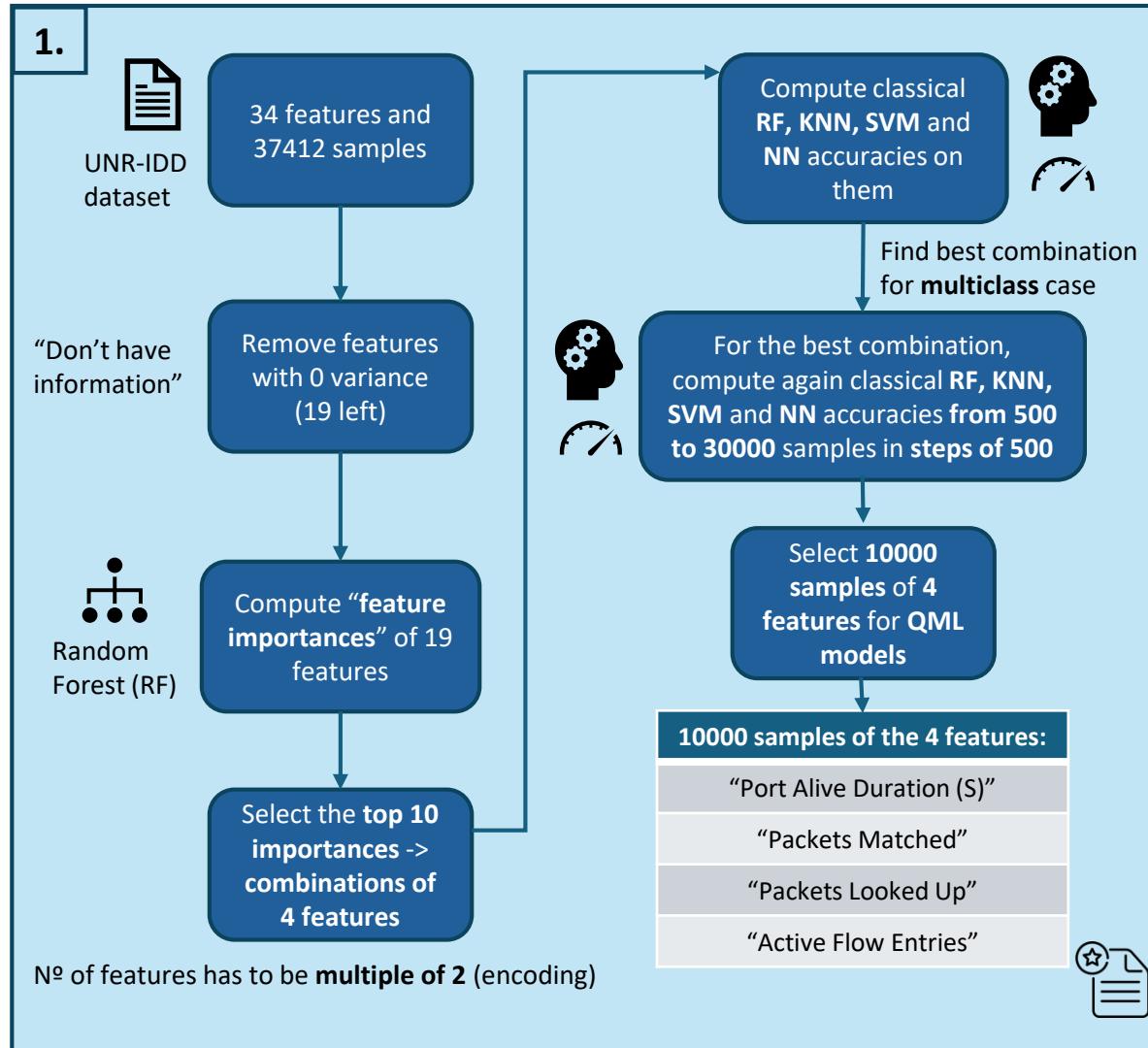
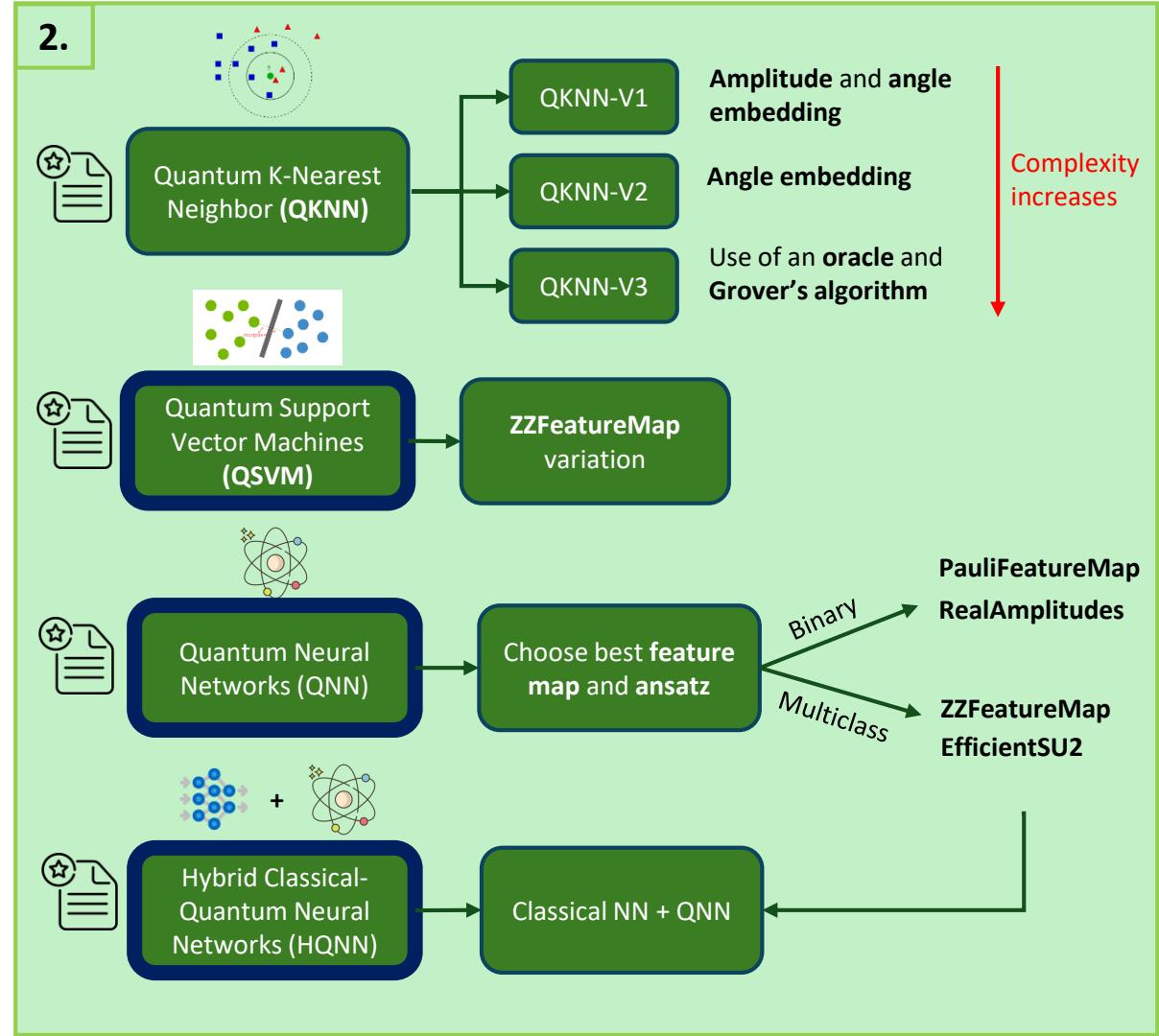
- University of Nevada - Reno Intrusion Detection Dataset (**UNR-IDD**).
- **37412 samples of 34 features** (as Packets Rx/Tx Dropped, flow entries, etc.¹).
- **Class Labels:** Normal (10%), Attack (90%): TCP-SYN, PortScan, Overflow, Diversion and Blackhole).



UNR-IDD SDN topology



Methodology steps: Reduce & Train

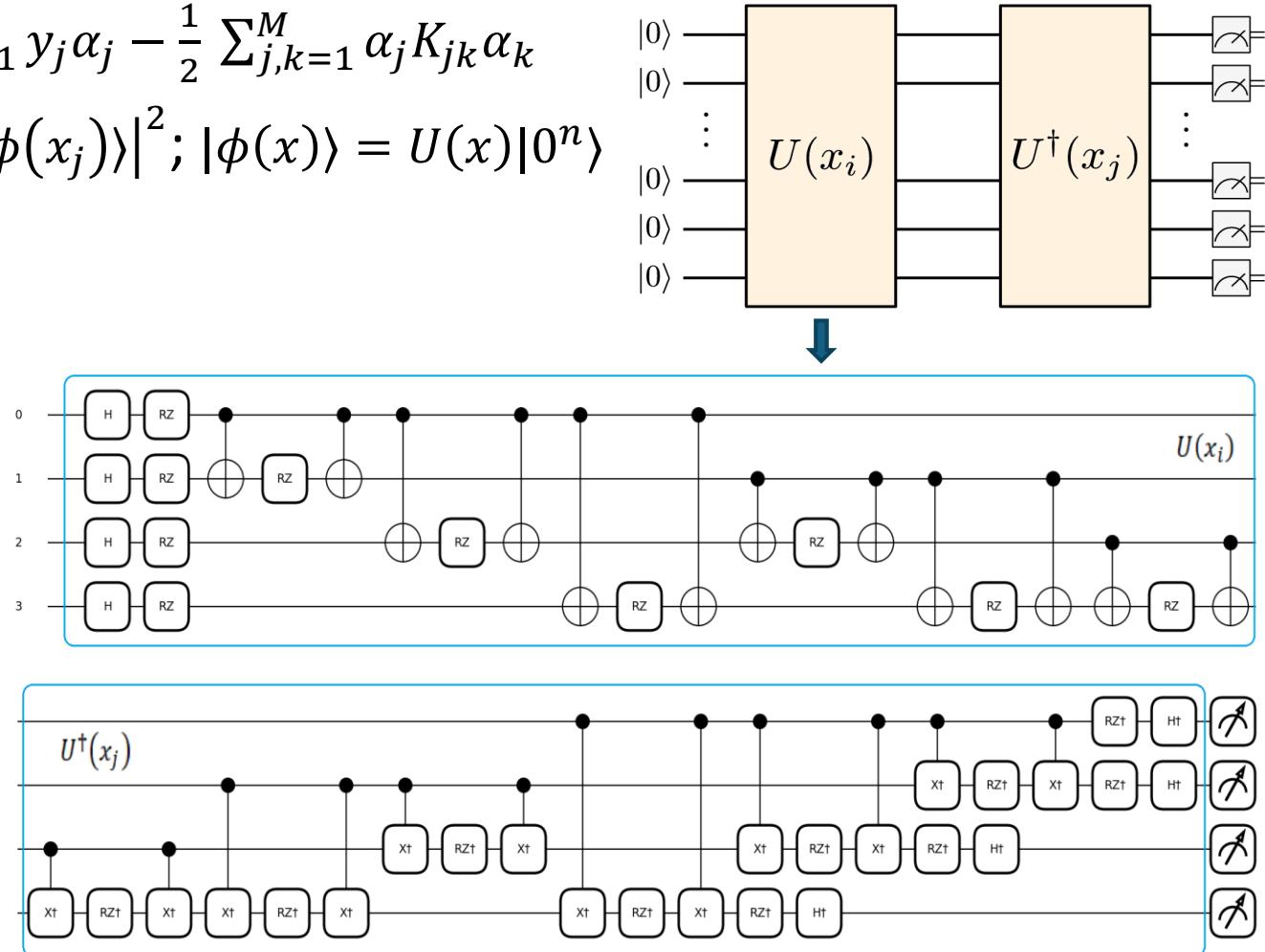


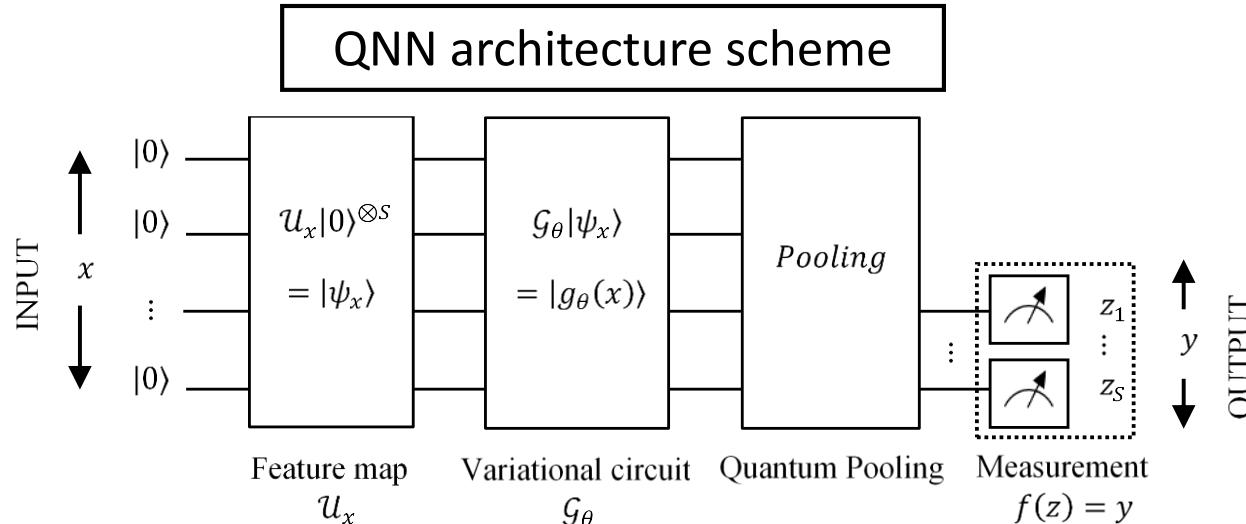
- Maximize objective function: $L(\alpha) = \sum_{j=1}^M y_j \alpha_j - \frac{1}{2} \sum_{j,k=1}^M \alpha_j K_{jk} \alpha_k$
- Quantum kernel trick: $K(x_i, x_j) = |\langle \phi(x_i) | \phi(x_j) \rangle|^2$; $|\phi(x)\rangle = U(x)|0^n\rangle$
- Customized version of ZZFeatureMap¹

$$G = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_M) \\ \vdots & \ddots & \vdots \\ K(x_M, x_1) & \dots & K(x_M, x_M) \end{bmatrix}$$

Run classical SVM with precomputed K :

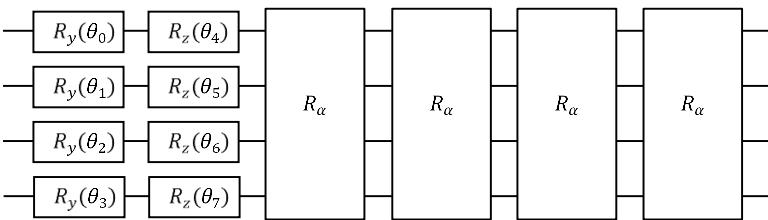
- Train:** compute G with both x_i and x_j as train samples
- Test:** compute G with x_i as test samples and x_j as train samples



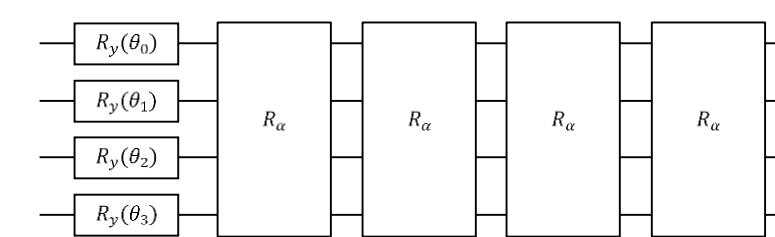


- **Binary** classification (best):
 - PauliFeatureMap¹ (U_x) + RealAmplitudes¹ (\mathcal{G}_θ)
- **Multiclass** classification (best):
 - ZZFeatureMap¹ (U_x) + EfficientSU2¹ (\mathcal{G}_θ)
- **COBYLA** optimizer for 600 iterations
- **Binary L2** and **normal cross-entropy** loss functions
- **Parameter-shift rule** for backpropagation

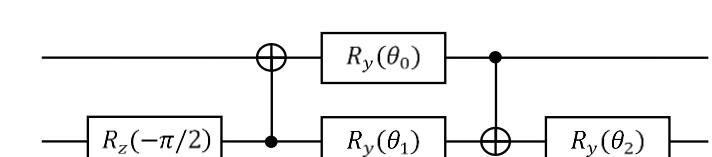
EfficientSU2 variational circuit \mathcal{G}_θ

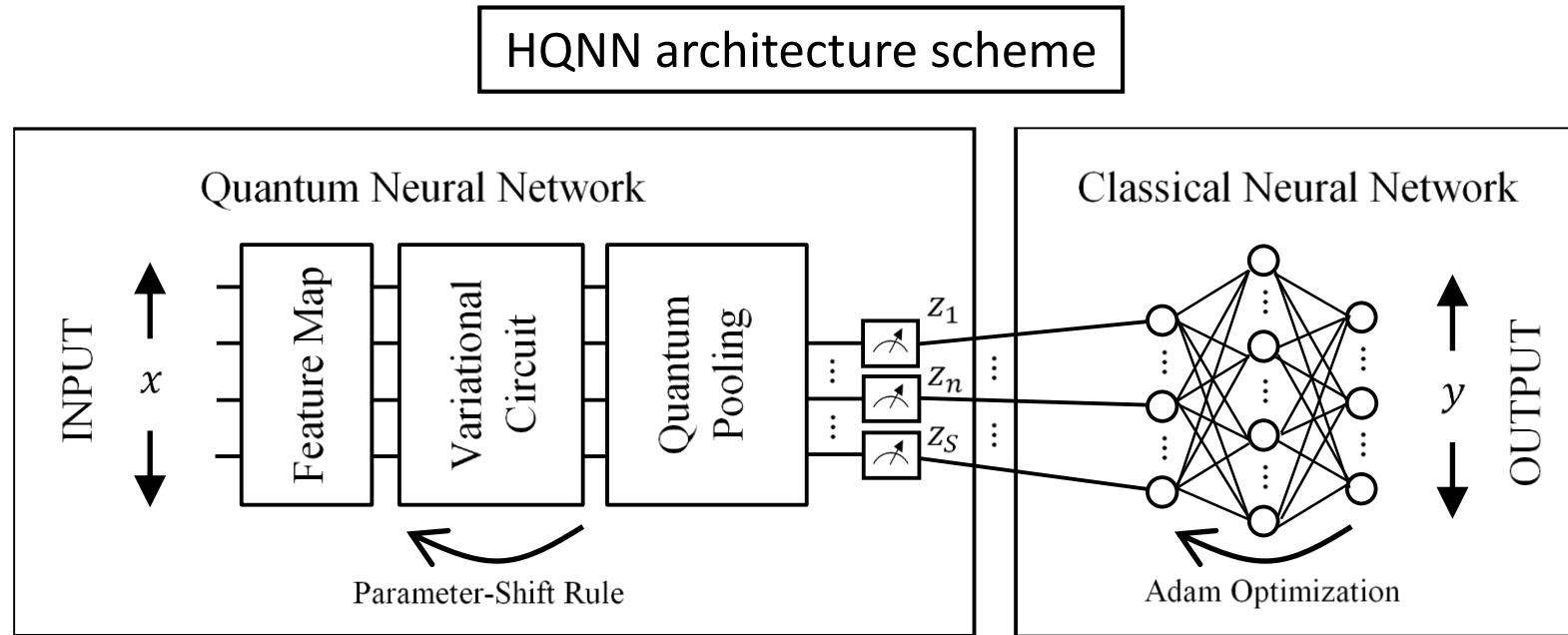


RealAmplitudes variational circuit \mathcal{G}_θ



Quantum Pooling layer

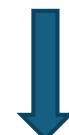




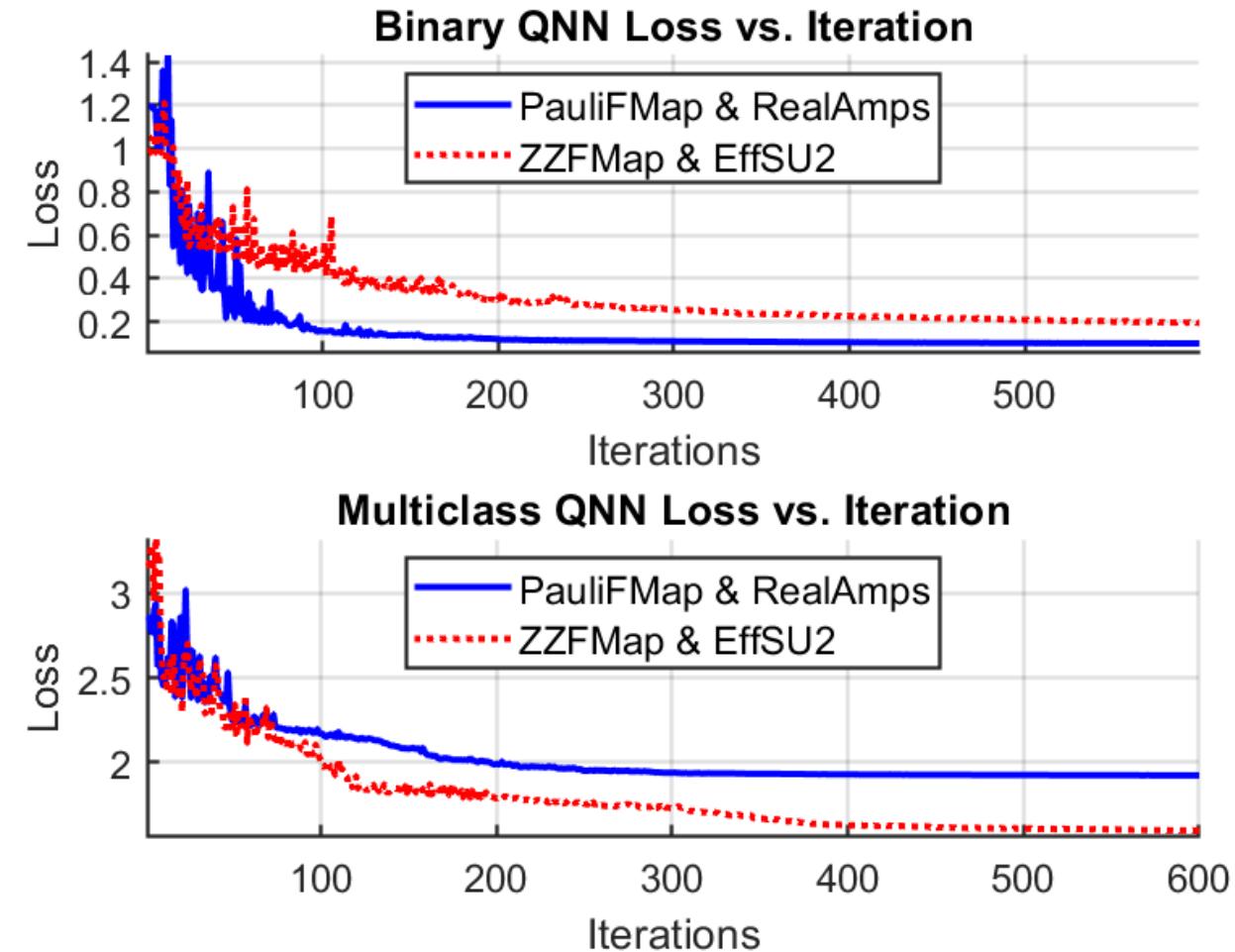
- Reuse of QNN feature map and variational circuit best combinations
- **Dropout and batch normalization**
- **Binary and normal cross-entropy** loss functions
- **50 epochs** of training

Results: QNN Training Losses

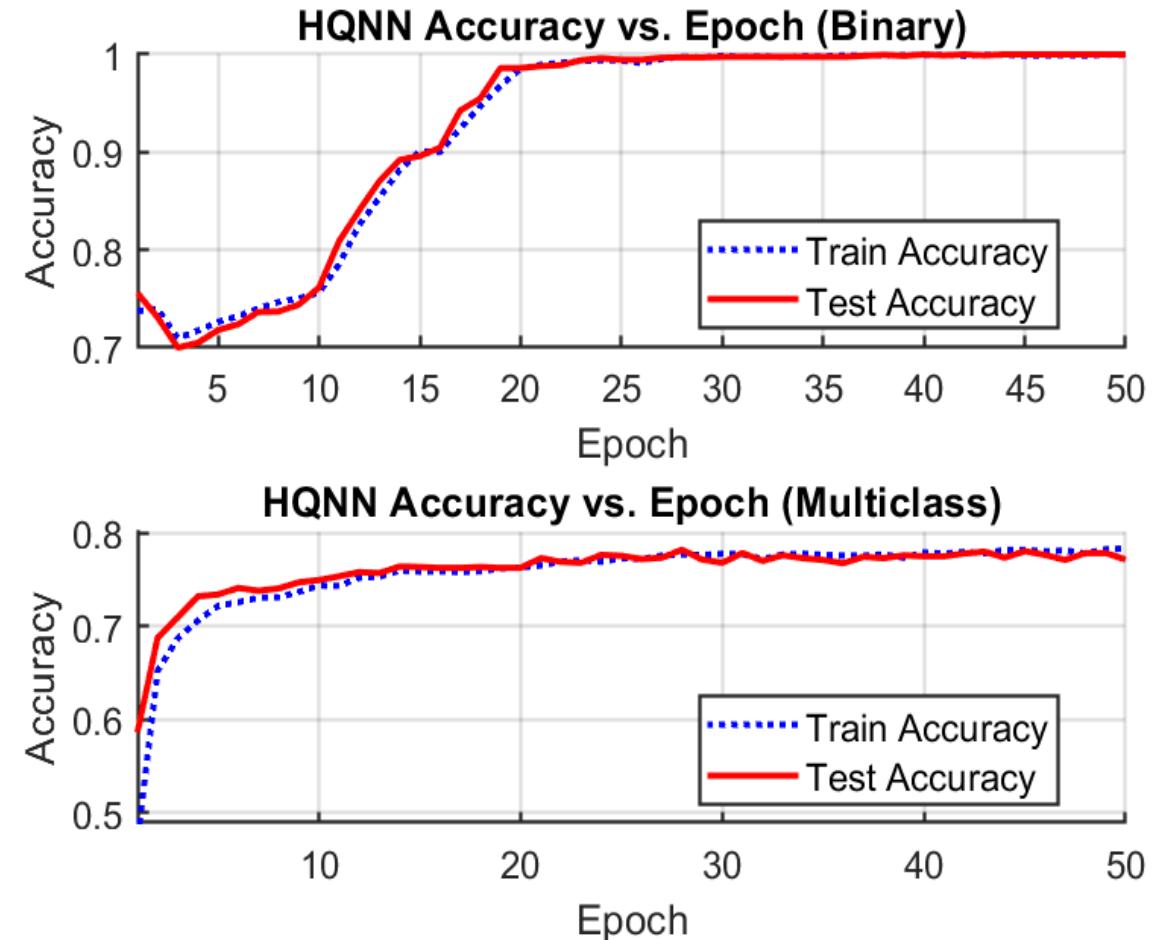
- The combination of **ZZFeatureMap** and **EfficientSU2** shows greater difficulty in reducing the loss compared to the **PauliFeatureMap** and **RealAmplitudes** combination for the binary case



These best circuit combinations are then utilized for HQNN in binary and multiclass, respectively



- Binary implements **ZZFeatureMap** and **EfficientSU2**
- Multiclass implements **PauliFeatureMap** and **RealAmplitudes**
- During training process, train and test accuracies are compared
- In binary case, the accuracy starts to stabilize around epoch 20
- In multiclass case, the accuracy has a steep increment until around epoch 5, to then increase slowly



Results: Overall Classical and Quantum models

Classical Models	Classification Type	Accuracy	$\overline{F1}$ score
RF	Binary	100%	100%
	Multiclass	87.35%	87.71%
KNN	Binary	100%	100%
	Multiclass	81.45%	89.35%
SVM	Binary	100%	100%
	Multiclass	69.65%	67.73%
NN	Binary	99.50%	98.64%
	Multiclass	77.10%	73.25%

Quantum Models	Classification Type	Accuracy
QKNN-V1 (Ang.)	Binary	100%
	Multiclass	46.80%
QKNN-V1 (Amp.)	Binary	90.05%
	Multiclass	19.80%
QKNN-V2	Binary	100%
	Multiclass	56.90%
QKNN-V3*	Binary	85%
	Multiclass	55%
QSVM	Binary	100%
	Multiclass	72.40%
QNN	Binary	98.90%
	Multiclass	63.55%
HQNN	Binary	100%
	Multiclass	78.24%

*200 samples

Considering a **reduced number of 4 features** (“Port Alive Duration (S)”, “Packets Matched”, “Packets Looked Up” and “Active Flow Entries”), this **benchmarking** of quantum and classical ML algorithms shows that QML provides better accuracy for:

- **QSVM** reaches 72.40% ahead of the 69.65% achieved by classical SVM
- **Hybrid solution HQNN** reaches 78.24%, surpassing the 77.10% achieved with classical NN

Future Research is required in order to:

- Analyze accuracy of both CML and QML with **higher number of features**
- Test in **real quantum computer** for checking computational performance in a more realistic scenario
- **Further explore** other QML algorithms and model architectures

Thank you!

Get in Touch with Us!

Joan Lo Anguera

José Antonio Lázaro

UPC – Universitat Politècnica de Catalunya -
BarcelonaTech

 joseantonio.lazaro@upc.edu

 joan.anguera@upc.edu

 <https://6G-ewoc.eu>

 [6G-ewoc-project](#)

Spanish MICIU founded, TRAINER-B
(PID2020-118011GB-C22).

The 6G-EWOC project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101139182.