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@ Introduction //lfﬁ

* This work explores the application of Quantum Machine Learning (QML) algorithms for
Network Intrusion Detection Systems (NIDS) in Software-Defined Networks (SDN),
comparing their performance with classical machine learning methods

* The objective is to classify network attacks from a NIDS dataset
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@ Software Defined Networking (SDN)

 Network traffic volumes and patterns increase Net App 1

every day — necessity of a new SDN paradigm
(started to gain recognition in 2012)

* OpenFlow protocol paper! was published in 2008

e Classical Networks have decentralized behavior

Control Plane

e Software-Defined Networks have centralized
behavior
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1: Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. 2008. “OpenFlow: enabling innovation in campus networks”. SIGCOMM Comput.
Commun. Rev. 38, 2 (April 2008), 69-74.

2: Image ref: Hakiri, Akram & Gokhale, et. al. (2014). “Software-Defined Networking: Challenges and research
opportunities for Future”.
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@ Network Intrusion Detection Dataset (UNR-IDD)

UNR-IDD SDN topology

 University of Nevada - Reno Intrusion
Detection Dataset (UNR-IDD). dows  Mest1o Hesto ostd Hosts
+ 37412 samples of 34 features (as Packets R/x ) ] (] |
Dropped, flow entries, etc.t).

e Class Labels: Normal (10%), Attack (90%):

TCP-SYN, PortScan, Overflow, Diversion and @ 9’@
Blackhole). /
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1: Image ref: T. Das, O. A. Hamdan, R. M. Shukla, S. Sengupta and E. Arslan, "UNR-IDD: Intrusion Detection Dataset using Network Port Statistics”.
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@ Methodology steps: Reduce & Train
1. L] .‘-_ ‘ A
% Compute classical Amplitude and angle
34 features and RF, KNN, SVM and embedding
; 37412 samples NN accuracies on ;
;”\iR ”?cD them f /A Quantum K-Nearest Angle embedding Fomplemty
atase Neighbor (QKNN) increases
Find best combination Use of an oracle and
Grover’s algorithm {

“Don’t have
information”

(Y X}
Random
Forest (RF)

Remove features
with 0 variance
(29 left)

Compute “feature
importances” of 19
features

Select the top 10
importances ->
combinations of

4 features

A

N2 of features has to be multiple of 2 (encoding)

For the best combination,
compute again classical RF, KNN,
SVM and NN accuracies from 500
to 30000 samples in steps of 500

Select 10000
samples of 4
features for QML
models

10000 samples of the 4 features:

“Port Alive Duration (S)”
“Packets Matched”
“Packets Looked Up”

“Active Flow Entries”

for multiclass case

ZZFeatureMap

Quantum Support
variation

Vector Machines
(Qsviv)

Quantum Neural

Networks (QNN) map and ansatz

Hybrid Classical-

Quantum Neural
Networks (HQNN)

Classical NN + QNN

PauliFeatureMap
RealAmplitudes

Choose best feature

ZZFeatureMap
EfficientSU2




@ QML Algorithms for NIDS: QSVM

. . . . . 1
* Maximize objective function: L(a) = XL, y;q; —25 Te=1 @Ky lgi —
* Quantum kernel trick: K(x;, x;) = [(¢ ()| (x;))|; 1p(x)) = Ux)|0™) 0| Ulz:) Ut(z;)|
 Customized version of ZZFeatureMap!
- :
K(x1,21) o K(xq,xy)
.+ G = : :
_K(xM: x1) - K(xy, XM)_ . Ulx)
Run classical SVM with precomputed K: DD}

* Train: compute G with both x; and
X; as train samples

* Test: compute G with x; as test
samples and x; as train samples

1: Qiskit Contributors. (2024). Qiskit Documentation. https://docs.quantum.ibm.com/api/qiskit 6



QML Algorithms for NIDS: QNN

QNN architecture scheme * Binary classification (best):
* PauliFeatureMap? (U,) + RealAmplitudes® (Gg)

A 10— * Multiclass classification (best):
_ 0) | UJ0)®* Gol) poot » ZZFeatureMap® (U,) + EfficientSU2! (Gp)
= ooling TP . o . .
& N B =1g6(x)) d Az i ~ * COBYLA optimizer for 600 iterations
- : : y E o . .

v o0 | 4] 2! . % Binary L2 and normal cross-entropy loss functions

o — : * Parameter-shift rule for backpropagation
Feature map  Variational circuit Quantum Pooling Measurement
ux Qg f(Z) = y

EfficientSU2 variational circuit Gg RealAmplitudes variational circuit Gg Quantum Pooling layer
LeHeoH  H H OH e H - & [
gl KDl Re [ & [ R[] R [ ke || & || & || & |
— RO R0 [ — — — — TR H ] H | —{R.(-7/2) Ry(8)) —B— Ry(6,) —
— REIH RO — — - — S yrsy - | | L |
e | B0 H R.G60) | . o o]
A @ | R0 H R0 ——r 4. F & ) —
—] — VayWrat [ R0 H Ry (01 _ - NN R, (80) 1: Qiskit Contributors. (2024). Qiskit Documentation.

| H |_ :I_ https://docs.quantum.ibm.com/api/qiskit

B - 3 U J I Ry(f}n) H Ry('gls) |‘ 1 — & O, () Ry('97) 7




@ QML Algorithms for NIDS: HQNN

HQNN architecture scheme

Quantum Neural Network Classical Neural Network
T 1 5§10 =
g on T
s ! 42 H 85 H 28 = =
r X 2 = o S ~
Z B g5 O = & 5
— 4 ©o H > | O A -
i ¢ o
Parameter-Shift Rule Adam Optimization

Reuse of QNN feature map and variational circuit best combinations

Dropout and batch normalization

Binary and normal cross-entropy loss functions

50 epochs of training



Results: QNN Training Losses

* The combination of ZZFeatureMap and _ Binary QNN Loss vs. Iteration
EfficientSU2 shows greater difficulty in ' PauliFMap & RealAmps
reducing the loss compared to the ZZFMap & EffSU2
PauliFeatureMap and RealAmplitudes
combination for the binary case

200 300 400 500
Iterations

Multiclass QNN Loss vs. Iteration

Loss

AR R vy naww
lllllllllllllllllllllllllllllllllllllllllll

These best circuit combinations are then
utilized for HQNN in binary and
multiclass, respectively

PauliFMap & RealAmps
ZZFMap & EffSU2

Loss

“"-llf--:--n---n-.-E-------.......

100 200 300 400 500 600
Iterations




Results: HQNN Training

Binary implements ZZFeatureMap and
EfficientSU2

Multiclass implements PauliFeatureMap
and RealAmplitudes

During training process, train and test
accuracies are compared

In binary case, the accuracy starts to
stabilize around epoch 20

In multiclass case, the accuracy has a
steep increment until around epoch 5, to
then increase slowly
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HQNN Accuracy vs. Epoch (Binary)

»+=====+= Train Accuracy
\ Test Accuracy
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Epoch
HQNN Accuracy vs. Epoch (Multiclass)
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@ Results: Overall Classical and Quantum models

Quantum Classification ACCUrac
Models Type y
_ —— QKNN-V1 Binary 100%
Classical | Classification Accuracy | F1 score (Ang.) I\/Iu!tlclass 46.80%
Models Type QKNN-V1 Binary 90.05%
Binary 100% 100% (Amp.) Multiclass 19.80%
RF Multiclass | 87.35% | 87.71% OKNN-V2 Binary 100%
. Multiclass 56.90%
Binary 100% 100% . 0
KNN : - - OKNN-V3* Binary 85%
Multiclass 81.45% | 89.35% Multiclass 5504
Binary 100% 100% Binary 100%
SVM Multiclass 69.65% | 67.73% QSVM Multiclass 72.40%
NN Binary 99.50% | 98.64% ONN Binary 98.90%
Multiclass | 77.10% | 73.25% 'V'é!“c'ass 6f(-)%§/°/°
Inary 0
HQNN Multiclass 78.24%

*200 samples

11




@ Conclusions & Future Research //[.

Considering a reduced number of 4 features (“Port Alive Duration (S)”, “Packets
Matched”, “Packets Looked Up” and “Active Flow Entries”), this benchmarking of
guantum and classical ML algorithms shows that QML provides better accuracy for:

* QSVM reaches 72.40% ahead of the 69.65% achieved by classical SVM

* Hybrid solution HQNN reaches 78.24%, surpassing the 77.10% achieved with classical
NN

Future Research is required in order to:
* Analyze accuracy of both CML and QML with higher number of features

* Test in real quantum computer for checking computational performance in a more
realistic scenario

* Further explore other QML algorithms and model architectures
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