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• This work explores the application of Quantum Machine Learning (QML) algorithms for
Network Intrusion Detection Systems (NIDS) in Software-Defined Networks (SDN),
comparing their performance with classical machine learning methods

• The objective is to classify network attacks from a NIDS dataset



Software Defined Networking (SDN)

• Network traffic volumes and patterns increase
every day → necessity of a new SDN paradigm
(started to gain recognition in 2012)

• OpenFlow protocol paper1 was published in 2008

• Classical Networks have decentralized behavior

• Software-Defined Networks have centralized
behavior
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1: Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott 
Shenker, and Jonathan Turner. 2008. “OpenFlow: enabling innovation in campus networks”. SIGCOMM Comput. 
Commun. Rev. 38, 2 (April 2008), 69–74. 
2: Image ref: Hakiri, Akram & Gokhale, et. al. (2014). “Software-Defined Networking: Challenges and research 
opportunities for Future”.



Network Intrusion Detection Dataset (UNR-IDD)

• University of Nevada - Reno Intrusion
Detection Dataset (UNR-IDD).

• 37412 samples of 34 features (as Packets Rx/Tx

Dropped, flow entries, etc.1).

• Class Labels: Normal (10%), Attack (90%):
TCP-SYN, PortScan, Overflow, Diversion and
Blackhole).
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1: Image ref: T. Das, O. A. Hamdan, R. M. Shukla, S. Sengupta and E. Arslan, "UNR-IDD: Intrusion Detection Dataset using Network Port Statistics”.

UNR-IDD SDN topology



Methodology steps: Reduce & Train
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34 features and 
37412 samples

Remove features 
with 0 variance 

(19 left)

Compute “feature 
importances” of 19 

features

Select the top 10 
importances -> 

combinations of 
4 features

Compute classical 
RF, KNN, SVM and 
NN accuracies on 

them

For the best combination, 
compute again classical RF, KNN, 
SVM and NN accuracies from 500 
to 30000 samples in steps of 500 

UNR-IDD 
dataset

Random 
Forest (RF)

Find best combination 
for multiclass case

Select 10000 
samples of 4 

features for QML 
models

Nº of features has to be multiple of 2 (encoding)

10000 samples of the 4 features:

“Port Alive Duration (S)”

“Packets Matched”

“Packets Looked Up”

“Active Flow Entries”

Quantum K-Nearest 
Neighbor (QKNN)

QKNN-V1

QKNN-V2

QKNN-V3

Quantum Support 
Vector Machines 

(QSVM)

Amplitude and angle
embedding

Angle embedding 

Use of an oracle and 
Grover’s algorithm

Quantum Neural 
Networks (QNN)

Hybrid Classical-
Quantum Neural 

Networks (HQNN)

Complexity 
increases

Choose best feature 
map and ansatz

“Don’t have 
information”

PauliFeatureMap

RealAmplitudes

ZZFeatureMap

EfficientSU2

Classical NN + QNN

+

1. 2.

ZZFeatureMap
variation



QML Algorithms for NIDS: QSVM

• Maximize objective function: 𝐿 𝛼 = σ𝑗=1
𝑀 𝑦𝑗𝛼𝑗 −

1
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σ𝑗,𝑘=1
𝑀 𝛼𝑗𝐾𝑗𝑘𝛼𝑘

• Quantum kernel trick: 𝐾 𝑥𝑖 , 𝑥𝑗 = ⟨𝜙 𝑥𝑖 |𝜙 𝑥𝑗 ⟩
2
; |𝜙 𝑥 ⟩ = 𝑈 𝑥 |0𝑛⟩

• Customized version of ZZFeatureMap1

• 𝐺 =
𝐾 𝑥1, 𝑥1 … 𝐾 𝑥1, 𝑥𝑀

⋮ ⋱ ⋮
𝐾 𝑥𝑀, 𝑥1 ⋯ 𝐾 𝑥𝑀, 𝑥𝑀
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• Train: compute 𝐺 with both 𝒙𝑖 and
𝒙𝑗 as train samples

• Test: compute 𝐺 with 𝒙𝑖 as test
samples and 𝒙𝑗 as train samples

Run classical SVM with precomputed 𝐾:

1: Qiskit Contributors. (2024). Qiskit Documentation. https://docs.quantum.ibm.com/api/qiskit



QML Algorithms for NIDS: QNN
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• Binary classification (best):
• PauliFeatureMap1 (𝒰𝑥) + RealAmplitudes1 (𝒢𝜃)

• Multiclass classification (best):
• ZZFeatureMap1 (𝒰𝑥) + EfficientSU21 (𝒢𝜃)

• COBYLA optimizer for 600 iterations

• Binary L2 and normal cross-entropy loss functions

• Parameter-shift rule for backpropagation

 

QNN architecture scheme

  

EfficientSU2 variational circuit 𝒢𝜃 RealAmplitudes variational circuit 𝒢𝜃

 

Quantum Pooling layer

1: Qiskit Contributors. (2024). Qiskit Documentation.
https://docs.quantum.ibm.com/api/qiskit



QML Algorithms for NIDS: HQNN

• Reuse of QNN feature map and variational circuit best combinations

• Dropout and batch normalization

• Binary and normal cross-entropy loss functions

• 50 epochs of training
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HQNN architecture scheme

 



Results: QNN Training Losses
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• The combination of ZZFeatureMap and
EfficientSU2 shows greater difficulty in
reducing the loss compared to the
PauliFeatureMap and RealAmplitudes
combination for the binary case

These best circuit combinations are then
utilized for HQNN in binary and
multiclass, respectively



Results: HQNN Training 
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• Binary implements ZZFeatureMap and
EfficientSU2

• Multiclass implements PauliFeatureMap
and RealAmplitudes

• During training process, train and test
accuracies are compared

• In binary case, the accuracy starts to
stabilize around epoch 20

• In multiclass case, the accuracy has a
steep increment until around epoch 5, to
then increase slowly



Results: Overall Classical and Quantum models
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Quantum 

Models

Classification 

Type
Accuracy

QKNN-V1 

(Ang.)

Binary 100%

Multiclass 46.80%

QKNN-V1 

(Amp.)

Binary 90.05%

Multiclass 19.80%

QKNN-V2
Binary 100%

Multiclass 56.90%

QKNN-V3*
Binary 85%

Multiclass 55%

QSVM
Binary 100%

Multiclass 72.40%

QNN
Binary 98.90%

Multiclass 63.55%

HQNN
Binary 100%

Multiclass 78.24%

*200 samples

Classical 

Models

Classification 

Type
Accuracy 𝑭𝟏 score

RF
Binary 100% 100%

Multiclass 87.35% 87.71%

KNN
Binary 100% 100%

Multiclass 81.45% 89.35%

SVM
Binary 100% 100%

Multiclass 69.65% 67.73%

NN
Binary 99.50% 98.64%

Multiclass 77.10% 73.25%



Conclusions & Future Research

Considering a reduced number of 4 features (“Port Alive Duration (S)”, “Packets
Matched”, “Packets Looked Up” and “Active Flow Entries”), this benchmarking of
quantum and classical ML algorithms shows that QML provides better accuracy for:

• QSVM reaches 72.40% ahead of the 69.65% achieved by classical SVM

• Hybrid solution HQNN reaches 78.24%, surpassing the 77.10% achieved with classical
NN

Future Research is required in order to:

• Analyze accuracy of both CML and QML with higher number of features

• Test in real quantum computer for checking computational performance in a more
realistic scenario

• Further explore other QML algorithms and model architectures
12
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