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Quantum Machine Learning NISQ Constrains

» QML potential to solve some of the ~ * Near-term devices suffer from noise and

classically hard problems effectively. limited resources.

* Excessive noise simply washes off the

Quantum
Computation

(BQP) learned function altogether, leading to poor

4 performance.

Classical

A'?;;‘;;'m * A model that generalizes in theory might not

do so once noise 1s introduced

Huang et al. (2021)
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How does noise affect OML model generalization ability?

We present a data-dependent generalization bound for noisy
QML models.
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Problem Setup

Supervised QML
Arbitrary noisy channel
Quantum Fisher Information

Rademacher Complexity
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(Generalization Bound
Theorem (Simplified)
« Let8 € 0 c R%, and F(8) be QFIM

* Let gradient of a noisy model be bounded by Lipschitz: Lj;

* Let./det(F(8) =m >0

* Let /g be the parameter space volume

Define C' = log(Vg) — log(V;) —log(m) + d log(L?)

Then with probability 1 — § over N training samples,

C’
) 12Vrd-ed log(26
R(6) < Ry(0) + :T/Ned+3\/ ng(v)

a
T2

)

Where V,; = , R(0) is the true risk, and Ry (0) is the empirical risk.
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[f after training, 8~ lies in a smaller region 0, ,. where the Fisher info 1s well-conditioned, the bound
can be made much tighter:
* Consider local parameter space, 0;,. € 0.

Under the condition of Main theorem ,

Define C;,, = log(V@LOC) — log(Vy) — log(my,) + d log (L?LOC)

Then, with probability 1 — 6 over N training samples, We have

!

CLoc
" 12Vnd - e d log(26)
R(O) < Ry(6) + +3
(0) < Ry(®) + o
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Numerical Analysis

* Experiments with 2-qubit PQC.
Datasets: Iris and Digits(Binary).

Depolarizing rate: p € {0.05,0.1, 0.5}
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Insights

* Generalization in QML can be quantified via the geometry of parameterized quantum

* Helps us understand how noise and finite data affect predictive reliability.

* Noise can sometimes act as regularizer but too much noise simply discard the learnability
altogether.

* Local parameter space given tighter and realistic generalization bound approximation.

* Parameter space volume, training sample size, and the QFIM can be an effective to govern

complexity.
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B Conclusions

* Presented a data-dependent generalization bound for QML under realistic noise.
* Showed that bounding the Fisher information determinant stabilizes the bound.

* Local refinements gives tighter bound that align well with empirical results.
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Any Questions?




