

# The Theory of Learning from Data as a Function of Noise

Bikram Khanal and Pablo Rivas

First International Workshop on Quantum Computing and Artificial Intelligence (QC+AI 2025 @ AAAI)

OJ



## Introduction

Quantum Machine Learning

- QML potential to solve some of the classically-hard problems effectively
- Quantum devices suffer from noise and limited resources
- Excessive noise simply washes off the learned function altogether, leading to poor performance
- A model that generalizes in theory might not do so once noise is introduced

Reference: 10002

## Generalization Bound

Thermodynamics (Stronger than PAC) for QML

- For a QML model to be bounded by Equation 14, a lower bound on the noise is needed
- Under the condition that  $\mathcal{L}_\text{true} \leq \mathcal{L}_\text{emp}$
- Under the condition that  $\mathcal{L}_\text{true} \leq \mathcal{L}_\text{emp}$ , the bound is

$$\text{Error} \leq \frac{1}{2} \log \left( \frac{2}{\delta} \right) + \frac{1}{2} \log \left( \frac{2}{\alpha} \right) + \frac{1}{2} \log \left( \frac{2}{\beta} \right)$$

Where  $\mathcal{L}_\text{true} = \log \left( \frac{1}{2} \right) + \log \left( \frac{1}{2} \right) + \log \left( \frac{1}{2} \right)$

## Problem Setup

- Supervised QML
- Arbitrary noisy channel
- Quantum Fisher Information
- Rademacher Complexity

## Numerical Analysis

Experiments with 2-qubit PQC

- Datasets: Iris and Digits (Binarized)
- Depolarizing rate:  $p \in \{0.05, 0.1, 0.5\}$

## Discussion

- Intuition: Generalization in QML can be quantified via the geometry of parameter space
- Noise can sometimes act as a regularizer but too much noise simply destroys the learnability of the model
- Large parameter space gives tighter and realistic generalization bound approximations
- Learned parameter space, matching sample size, and the QML can be an effective to govern consistency

## Thank you Any Questions?

## Results

Iris

Digits

## Conclusions

- Presented a data-dependent generalization bound for QML under realistic noise
- Showed that bounding the Fisher information determinant stabilizes the bound
- Local refinements gives tighter bound that align well with empirical results

## Local Generalization Bound

If after training,  $\mathcal{L}^*$  lies in a smaller region than where the Fisher info is well-conditioned, the bound can be bounded more tightly

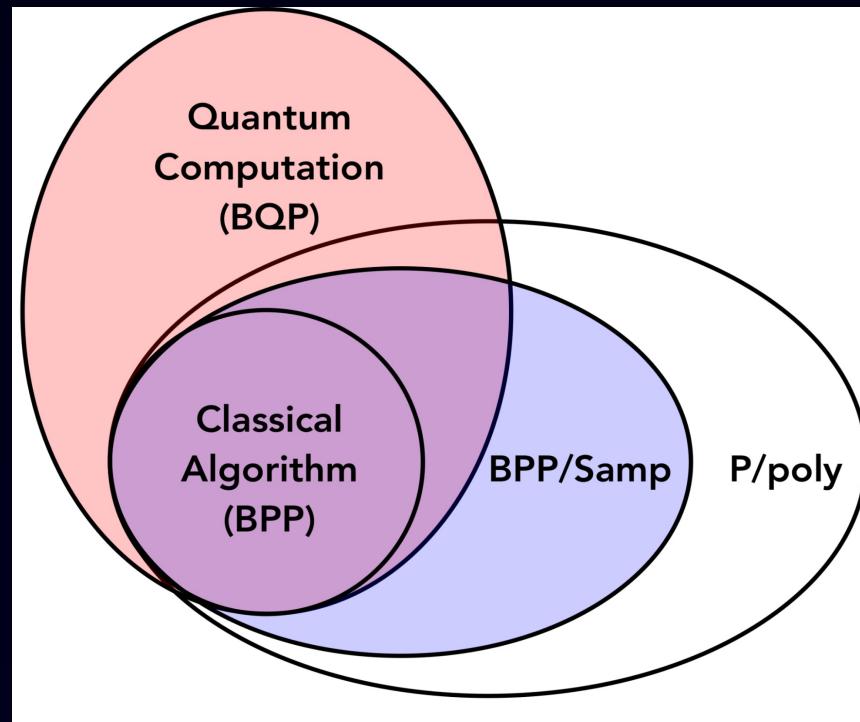
- Constrained bound performance:  $\mathcal{L}^* \leq \mathcal{L}_\text{true}$
- Under the condition that  $\mathcal{L}^* \leq \mathcal{L}_\text{true}$ , the bound is

$$\text{Error} \leq \frac{1}{2} \log \left( \frac{2}{\delta} \right) + \frac{1}{2} \log \left( \frac{2}{\alpha} \right) + \frac{1}{2} \log \left( \frac{2}{\beta} \right)$$

# Introduction

## Quantum Machine Learning

- QML potential to solve some of the classically hard problems effectively.



Huang et al. (2021)

## NISQ Constraints

- Near-term devices suffer from noise and limited resources.
- Excessive noise simply washes off the learned function altogether, leading to poor performance.
- A model that generalizes in theory might not do so once noise is introduced



*How does noise affect QML model generalization ability?*

We present a *data-dependent* generalization bound for noisy QML models.



# Problem Setup

- Supervised QML
- Arbitrary noisy channel
- Quantum Fisher Information
- Rademacher Complexity



# Generalization Bound

## Theorem (Simplified)

- Let  $\theta \in \Theta \subset \mathbb{R}^d$ , and  $\mathcal{F}(\theta)$  be QFIM
- Let gradient of a noisy model be bounded by Lipschitz:  $L_p^f$
- Let  $\sqrt{\det(\mathcal{F}(\theta))} \geq m > 0$
- Let  $V_\Theta$  be the parameter space volume

Define  $C' = \log(V_\Theta) - \log(V_d) - \log(m) + d \log(L_p^f)$

Then with probability  $1 - \delta$  over  $N$  training samples,

$$R(\theta) \leq \hat{R}_N(\theta) + \frac{12 \sqrt{\pi d} \cdot e^{\frac{C'}{d}}}{\sqrt{N}} + 3 \sqrt{\frac{\log(2\delta)}{2N}}$$

Where  $V_d = \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2} + 1)}$ ,  $R(\theta)$  is the true risk, and  $\hat{R}_N(\theta)$  is the empirical risk.



# Local Generalization Bound

If after training,  $\theta^*$  lies in a smaller region  $\Theta_{Loc}$  where the Fisher info is well-conditioned, the bound can be made *much tighter*:

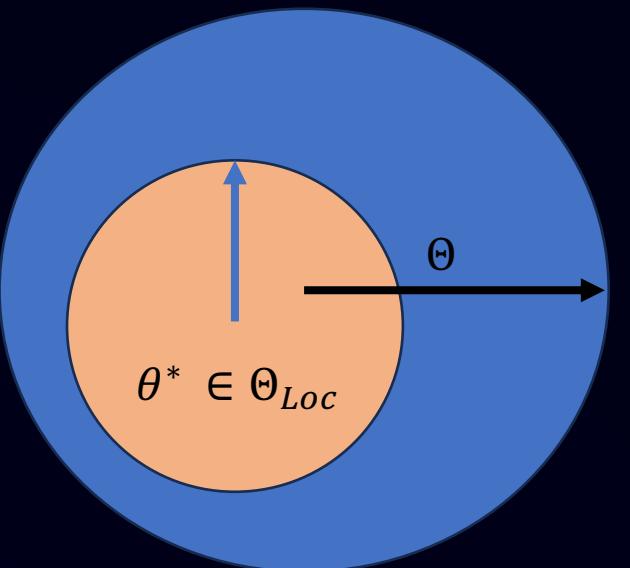
- Consider local parameter space,  $\Theta_{Loc} \subseteq \Theta$ .

Under the condition of Main theorem ,

Define  $C'_{Loc} = \log(V_{\Theta_{Loc}}) - \log(V_d) - \log(m_{Loc}) + d \log(L_{f_{Loc}}^p)$

Then, with probability  $1 - \delta$  over  $N$  training samples, We have

$$R(\theta) \leq \hat{R}_N(\theta) + \frac{12 \sqrt{\pi d} \cdot e^{\frac{C'_{Loc}}{d}}}{\sqrt{N}} + 3 \sqrt{\frac{\log(2\delta)}{2N}}$$



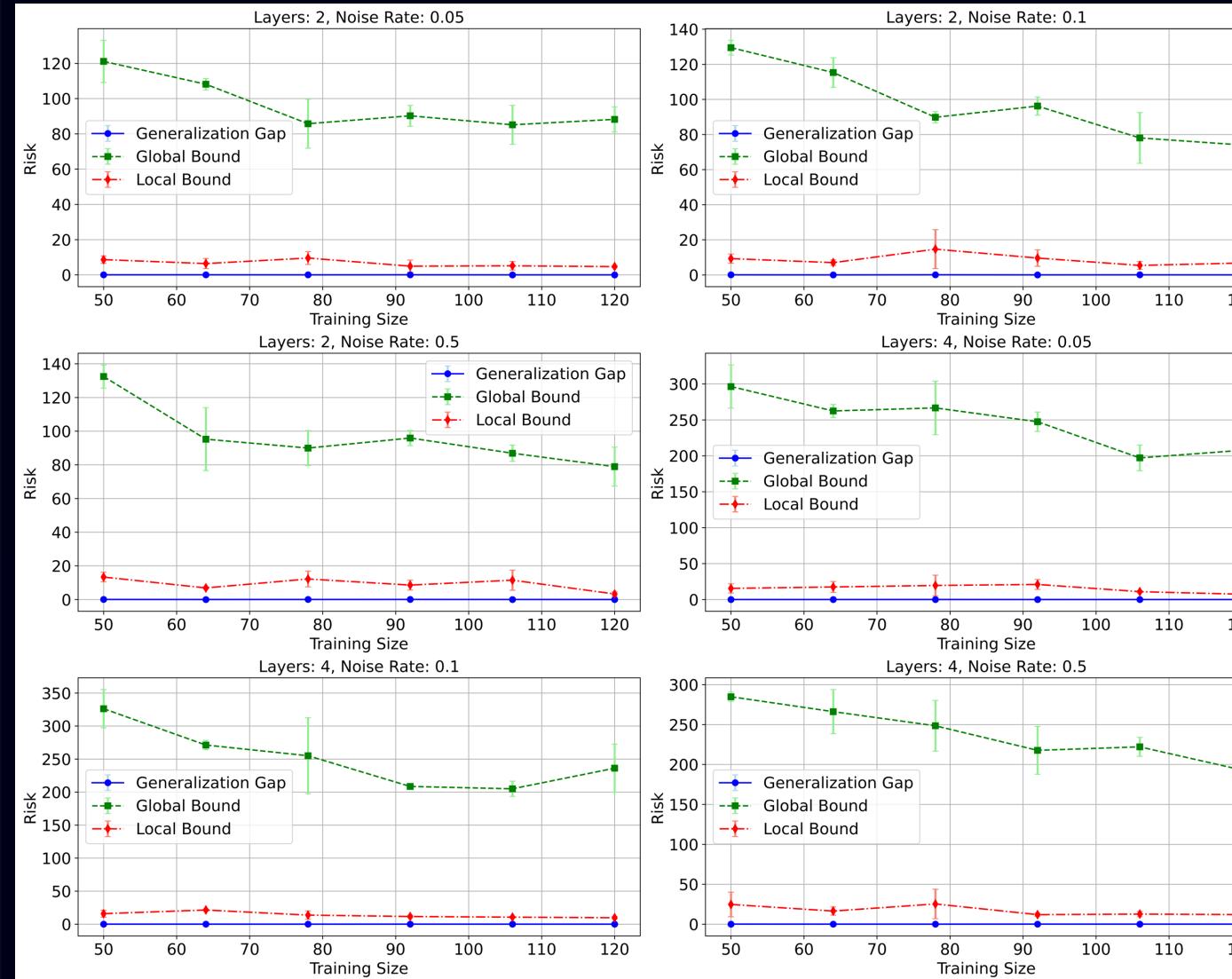
# Numerical Analysis

- Experiments with 2-qubit PQC.
- Datasets: Iris and Digits(Binary).
- Depolarizing rate:  $p \in \{0.05, 0.1, 0.5\}$

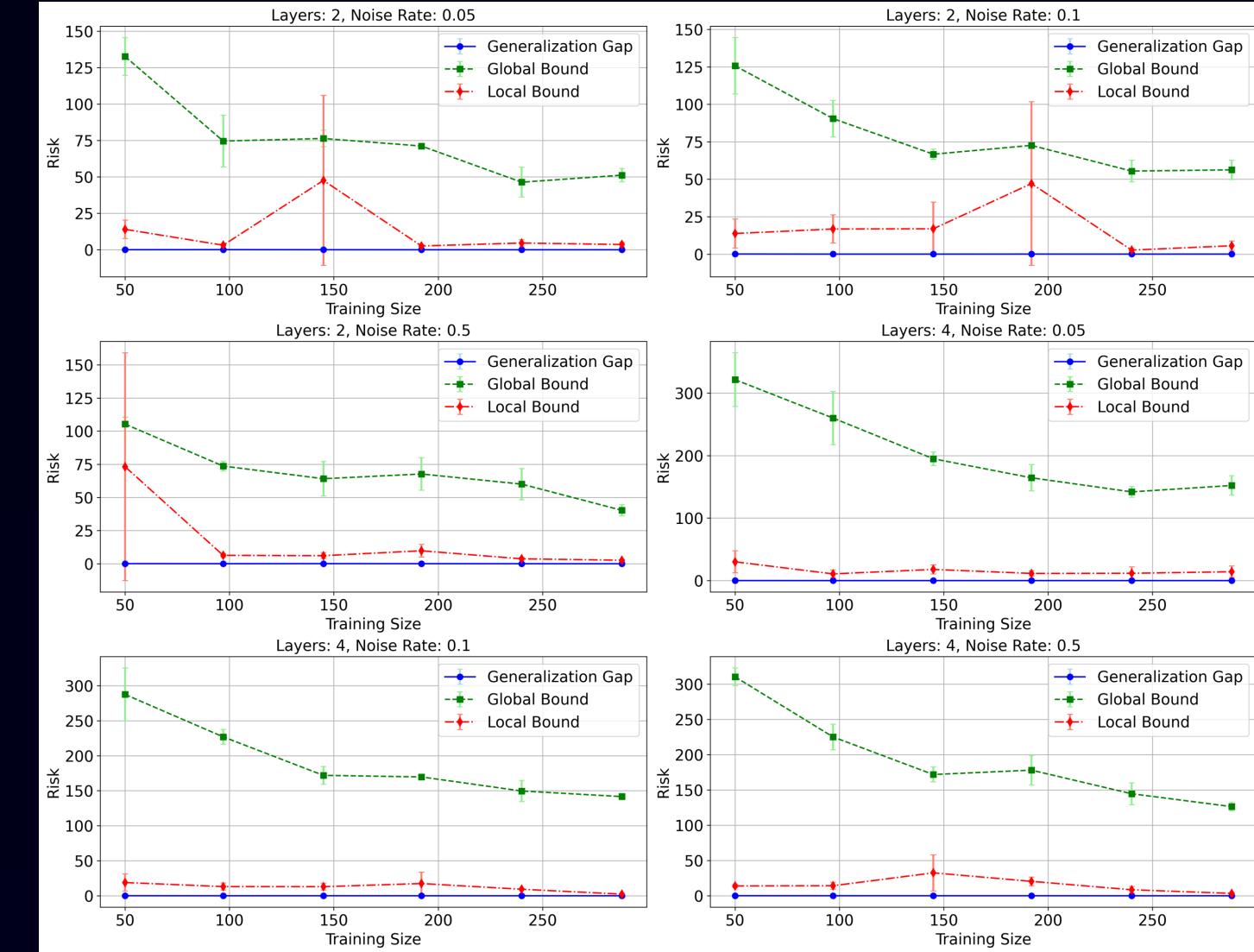


# Results

## Iris



## Digits



# Discussion

## ■ Insights

- Generalization in QML can be quantified via the geometry of parameterized quantum
- Helps us understand how noise and finite data affect predictive reliability.
- Noise can sometimes act as regularizer but too much noise simply discard the learnability altogether.
- Local parameter space given tighter and realistic generalization bound approximation.
- Parameter space volume, training sample size, and the QFIM can be an effective to govern complexity.



# Conclusions

- Presented a *data-dependent* generalization bound for QML under realistic noise.
- Showed that bounding the Fisher information determinant stabilizes the bound.
- Local refinements gives tighter bound that align well with empirical results.



Thank you

Any Questions?

