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Introduction

Quantum Machine Learning NISQ Constrains

• Near-term devices suffer from noise and 

limited resources.

• Excessive noise simply washes off the 

learned function altogether, leading to poor 

performance.

• A model that generalizes in theory might not 

do so once noise is introduced

• QML potential to solve some of the 

classically hard problems effectively.

Huang et al. (2021)



How does noise affect QML model generalization ability?

We present a data-dependent generalization bound for noisy 
QML models.



Problem Setup

• Supervised QML

• Arbitrary noisy channel

• Quantum Fisher Information

• Rademacher Complexity  



Generalization Bound
Theorem (Simplified)
• Let 𝜃 ∈ Θ ⊂ ℝ! , 𝑎𝑛𝑑 𝓕(𝜃) be QFIM

• Let gradient of a noisy model be bounded by Lipschitz: 𝐿"
#

• Let det(𝓕 𝜃 ) ≥ 𝑚 > 0

• Let 𝑉$ be the parameter space volume
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Then with probability 1 − 𝛿 over 𝑁 training samples,
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, 𝑅 𝜃 is the true risk, and B𝑅& 𝜃 is the empirical risk.



Local Generalization Bound
If after training, 𝜃∗ lies in a smaller region Θ-./ where the Fisher info is well-conditioned, the bound 

can be made much tighter:

• Consider local parameter space, Θ-./ ⊆ Θ. 

Under the condition of Main theorem ,

Define 𝐶-./% = log 𝑉$$%& − log 𝑉! − log 𝑚-./ + 𝑑 log 𝐿#$%&
"

Then, with probability 1 − 𝛿 over 𝑁 training samples, We have

𝑅 𝜃 ≤ B𝑅& 𝜃 +
12 𝜋𝑑 ⋅ 𝑒
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𝜃∗ ∈ Θ()*



Numerical Analysis

• Experiments with 2-qubit PQC.

• Datasets: Iris and Digits(Binary).

• Depolarizing rate: 𝑝 ∈ 0.05, 0.1, 0.5

MSE minimization via NGD.



Results
Iris Digits



Discussion

Insights

• Generalization in QML can be quantified via the geometry of parameterized quantum 

• Helps us understand how noise and finite data affect predictive reliability.

• Noise can sometimes act as regularizer but too much noise simply discard the learnability 

altogether. 

• Local parameter space given tighter and realistic generalization bound approximation.

• Parameter space volume, training sample size, and the QFIM can be an effective  to govern 

complexity.



Conclusions

• Presented a data-dependent generalization bound for QML under realistic noise.

• Showed that bounding the Fisher information determinant stabilizes the bound.

• Local refinements gives tighter bound that align well with empirical results.



Thank you

Any Questions?


