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* Background of Generative Al

Overview of Quantum Al

Introduction of Quantum Diffusion Models

Proposed Methods for Quantum Few-Shot Learning

Experiments
— 5 to 30% accuracy improvement

Summary
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Sa s Generative Al: Surpassing Human-Level Creativity

Changes for the Better

Zebras _ Horses

* VAE
* GAN

e Diffusion

horse — zebra

StyleGAN [Karras et al, 2019]

Diffusion [Dhariwal et al., 2021] Dall-E 2 [Ramesh et al. 2022] Imagen [Saharia et al. 2022] StableDiffusion [Rombatch et al. 2022]
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s iR Generative Al: Surpassed Human-Level Creativity @%@E’%ﬁ

Changes for the Better

e Al won some art prizes and inventions THE HOSH AWARD <

— Kamome Ashizawa’s Al-generated novel, “Are you there?”, took the Hoshi-Shinichi Literary
Award in Nikkei press, Feb. 2022
I ”

— Jason Allen’s Al-generated painting, “Théatre D’opéra Spatial,
category at the Colorado State Fair. Sep. 2022

— DABUS Al-generated patents
granted in South Africa, Jul. 2022

— Boris Eldagsen’s Al-generated photo, “The Electrician”
came top in open competition at the World Photography |
Organization’s Sony World Photography Awards Apr. 2023.

DABUS: EMBODIMENT 1

took first place in the digital ®

4o
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4
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Changes for the Better

Green vs. Red Al

* Roy Schwartz, Jesse Dodge, Noah A. Smith, Oren Etzioni, “Green Al”,
Communications of the ACM, December 2020, Vol. 63 No. 12, Pages 54-63
10.1145/3381831: https://cacm.acm.org/magazines/2020/12/248800-green-ai/

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
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The computation used to train deep learning models has increased 300,000x
in six years: nearly 10x annually
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Changes for the Better

 Escalating power consumption of DNN training

Deep Learning Crisis for Sustainable Growth

— [Strubell et al. Energy and policy considerations for deep learning in NLP. 2019]
— DNN training with network architecture search (NAS) on GPUs requires 5-fold higher carbon

* Therefore, we should consider Green Al
— Efficient, fast, low-power, lightweight Al

emission of single car lifetime!

— New computing modality alternative to CPU/GPU/TPU: Natural computing (Quantum)

© MERL

Consumption COse (Ibs)
Air travel, 1 passenger, NY <+ SF 1984
Human life, avg, 1 year 11,023
American life_ave. 1 vear 36.156
Car, avg incl. fuel, 1 lifetime 126,000
Training one model (GPU)
NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468
Transformer (big) 192
w/ neural architecture search 626,155
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S MEEM Quantum Computing

Changes for the Better

* Morgan Stanley: Quantum tech. can drive 4t industrial revolution coANTUN

Escalating government funds: National Quantum Initiative o o]

Quantum processor providers: IBM, Google, Microsoft, Honeywell, Intel, IONQ, rigetti, ...

Quantum cloud services: IBMQ, Amazon Bracket, ...

Free libraries to evaluate quantum computing on realistic simulators or real devices

(= M pyQUIL (|nte|® B® Microsoft
> »

ke Cirq gl o rigetti Momevwel  ____
P ¥ PENNYLANE Google

PROJECTQ

CPU GPU TPU QpPU
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Changes for the Better

Sl Evolution of Quantum Processing Unit (QPU) = ‘|
i

* Rapid QPU development to allow many qubits g
— IBM released 127-qubit QPUs in Nov. 2021 ///77// My,
— IBM released 433-qubit QPUs in Nov. 2022 " By

IBM 127-qubit QPU IBM 433-qubit QPU
(Nov. 2021) (Nov. 2022)

IBM Quantum

1121 QUBITS
SCALE | YIELD

IBM 1121-qubit QPU

(Dec. 2023) IBM 156-qubit QPU

(Nov. 2024): 5000 gates
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Quantum algorithm and application modules Quantum Serverless ‘@

Machine learning | Natural science | Optimization

Dynamiccircuits @  Threaded primitives 33)  Error suppression and mitigation Error correction
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IBM QPU development roadmap (as of 2022)



Sl MERL's QML Research

Changes for the Better Qubit

* MERL QML research highlight:
— https://www.merl.com/research/highlights/quantum-ai
— QHack: 2022 AWS award; IBM award; 2023 Nvidia award; 3™ prize

 Various Industrial QML Applications

© MERL

- o -
Entanglement

Superposition o

Matsumine, T., Koike-Akino, T., Wang, Y., "Channel Decoding with Quantum Approximate Optimization
Algorithm", ISIT, July 2019.

Koike-Akino, T., Matsumine, T., Wang, Y., Millar, D.S., Kojima, K., Parsons, K., "Variational Quantum
Demodulation for Coherent Optical Multi-Dimensional QAM", OFC/NFOEC, March 2020, pp. T3D.6.

Koike-Akino, T., Wang, P., Wang, Y., “Quantum Transfer Learning for Wi-Fi Sensing”, ICC, June 2022.

Liu, B., Koike-Akino, T., Wang, Y., Parsons, K., “Variational Quantum Compressed Sensing for Joint User and
Channel State Acquisition in Grant-Free Device Access Systems ”, ICC, June 2022.

Koike-Akino, T., Wang, P., Wang, Y., “AutoQML: Automated Quantum Machine Learning for Wi-Fi Integrated
Sensing and Communications”, SAM, Aug. 2022.

Koike-Akino, T., et al., “Quantum Feature Extraction for THz Multi-Layer Imaging”, IRMMW-THz, Aug. 2022.
Koike-Akino, T., Wang, Y., “quEEGNet: Quantum Al for Biosignal Processing”, BHI, Sep. 2022.

Koike-Akino, T., Wang. P., “Post-Deep Learning Era: Emerging Quantum Machine Learning for Sensing and
Communications”, GLOBECOM, Dec. 2022.

Brain

‘_/
Liu, B., Koike-Akino, T., Wang, Y., Parsons, K., “Learning to Learn Quantum Turbo MIMO Detection”, arXiv, Ing;;g:"}rg
2022. 2

Koike-Akino, T., “COVID-19 Quantum Forecasting”, QHack, Mar. 2022.
Koike-Akino, T., “Quantum mixed reality (XR)”, QHack, Mar. 2023.

Ahmed, M.R., Koike-Akino, T., Parsons, K., Wang, Y., "AutoHLS: Learning to Accelerate Design Space
Exploration for HLS Designs", MWSCAS, Aug. 2023.
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ot MTsUBSH Quantum Diffusion Models

Changes for the Better

* Quantum denoising diffusion models (QDDM)

Diffusion
Ie] 5> Ld-
N0|se Predictor

oy -_.-».-;:E-»ﬂ-)n
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o

Noise Predictor From QDDM
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_____ QNN Training ___} ! " QNN Inference __! L L
Diffusion inference Denoising inference

Generation inference

* 5-30% accuracy improvement
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Satee Diffusion Models

* Denoising Diffusion Probabilistic Model (DDPM) [Ho 2020] is a pioneering generative Al
model, outperforming VAE and GAN

— 2 processes: Diffusion steps; Denoising steps

— Variants: Implicit Diffusion [Song 2020]; Latent Diffusion [Rombach 2022]; Guided Diffusion [Ho
2022]
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S iBEH Quantum Denoising Diffusion Model (QDDM)

Changes for the Better

* The diffusion models were migrated to the quantum domain
— Cacioppo 2023: Quantum diffusion models
Kolle 2024: Quantum denoising diffusion models

Zhang 2024: Generative guantum machine learning via denoising diffusion probabilistic models
Parigi 2024: Quantum-Noise-Driven Generative Diffusion Models
Kwun 2024: Mixed-State Quantum Denoising Diffusion Probabilistic Model

Chen 2024 Quantum generative diffusion model: a fully guantum-mechanical model for generating quantum
state ensemble

* We use QDDM as a foundational tool for few-shot learning (FSL)

2> i NE- N8

A T T
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S e Quantum Few-Shot Learning

Changes for the Better

* Few-shot learning (FSL) is designed to address supervised learning challenges
with a very limited number of training examples: support set.

— The support set consists of a small number of labeled examples, encompassing n
classes, each with k examples: called n-way, k-shot.

— We consider quantum FSL to train quantum neural networks (QNNs)
support

\ embedding module relationmodule

Feature maps concatenation

Relation One-hot
score  vector

5-way fo 96 .

5-way 1-shot learning [Sung 2018]
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Loumsest Method I: Generation Inference

Changes for the Better

 QDDM-Based Label-Guided Generation Inference (LGGI)

— The primary challenge of QFSL is the limited availability of training data. Thus, expanding
the training dataset can significantly enhance the performance of QFL.

— A small amount of few-shot data is used to train the QDDM. Then, the QDDM is employed to
expand the training dataset for QNN.

— This expanded dataset is then used to train the QNN, which in turn improves its inference accuracy
onrealdata, - - cccc - e e

B o o - e e e e e e e e e e e e e
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Savmsuesi Method I1: Diffusion Inference

Changes for the Better

 QDM-Based Label-Guided Noise Addition Inference (LGNAI)

— The learning objective of the QDDM relies on using a noise predictor to estimate the
noise in noisy data compared to the actual noise.

— The noise predictor’s estimation is guided by a label. By using the correct label for
guidance, the error between the predicted noise and the actual noise may be
minimized.

Noise Predictor From QDDM

I PN

argmin(Lo-loss, Li-loss)
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SalsEs Method INI: Denoising Inference

Changes for the Better

« QDDM-Based Label-Guided Denoising Inference (LGDI)

— During the denoising phase of the QDDM, the noise predictor is utilized to estimate
the noise present in the noisy data, which is subsequently subtracted.

— The noise prediction is guided by labels. Consequently, the final generated images
vary according to the guidance provided by different labels.

— The data generated under the guidance of the true label may be close to the original
data.
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S QDDM Training

Changes for the Better

* We use Adam for 10,000 epochs; labels are encoded with RX gate

* The training loss reflects the discrepancy between the noises predicted by the noise
predictor and the actual noises during the denoising phase.

0.020-
0.016
0.012-
0.008; m
0 2\3,()0 5000 1500 10(,()0

Figure 8: Training Loss Trends during QDDM Model Training.
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Changes for the Better

Performance of Quantum Few-Shot Learning

* QDDM-based FSL offers significant improvement in accuracy

Dataset Tasks | QDiff-LGDI QDiff-LGNAI QDiff-LGGI QMLP C14 OPTIC Quantumnat
2w-01s | 0.975+0.059 0.978+0.003 0.99210.000 | 0.76410.108 0.505+0.175 0.52540.133  0.751+0.147
Digits 2w-10s | 0.98310.006 0.9971+0.002 0.98410.012 | 0.89210.086 0.627+0.086 0.886+0.193 0.72210.186
3w-01s | 0.52540.001 0.635+0.007 0.5731+0.069 | 0.338+0.087 0.447+0.103 0.47540.021 0.999+0.013
3w-10s | 0.85740.015 0.801t9.008 0.63240.035 | 0.35540.050 0.48110.183 0.698410.121 0.687410.156
2w-01s | 0.943+0.002 0.965+0.003 0.805+0.093 | 0.675+0.067 0.567+0.064 0.84510.149 0.70110.162
MNIST 2w-10s | 0.953+0.011 0.97810.005 0.91510.079 | 0.81740.048 0.810+0.152 0.80710.173  0.72710.151
3w-01s | 0.475+0.003 0.5054+0.007 0.42840.035 | 0.325+0.027 0.503+0.122 0.477+0.150  0.50140.012
3w-10s | 0.72040.016 0.82540.008 0.40540.022 | 0.54740.085 0.60740.142 0.77049.191  0.5271¢.078
2w-01s | 0.73819.007 0.768-+0.007 0.89840.036 | 0.68840.064 0.98149.187 0.76540.149  0.583+0.181
Fashion 2w-10s | 0.755+0.020 0.805-+0.002 0.895+0.066 | 0.73140.035 0.773+0.0909 0.793+0.157  0.887+0.129
3w-0Is | 0.453+0.008 0.433+0.001 0.483+0.012 | 0.331+0.008 0.332+0.172 0.47310.128  0.62210.063
3w-10s | 0.65540.018 0.735+0.004 0.58540.025 | 0.64740.015 0.52740.173 0.59340.139  0.653+0.032
Average 0.754+0.015 0.79540.004 0.71940.045 | 0.57440.060 0.54640.140 0.67810.150 0.66610.120
|
QDDM-based FSL
© MERL 3/3/25; Quantum Diffusion for Few-Shot Learning 18




e My Impact of Quantum Noise

Changes for the Better

* We demonstrated robustness against quantum noise on IBM_Almaden quantum
processors

1.0
HEEl Real

0.8 B Simulator
0.6

0.4

0.2

3-way, 1-shot
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SadBEs Impact of QNN Ansatz

Changes for the Better

* The impact of the selection of QNNs utilized in Qdiff-LGGI
— Different QNNs have different expressive abilities and different information extraction

capabilities for input images.
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S iEs Performance of Quantum Zero-Short Learning

Changes for the Better

* We utilize the Digit MNIST dataset to train the QDDM and then use Qdiff-based
algorithms to complete the inference on the MINIST dataset. The same strategy is
employed for experiments on the MNIST dataset.

B MNIST 0.75| mmm MNIST
= Digit MNIST 0.60] ™™ Digit MNIST

1.00

0.75-

0.45
0.50-

0.30;

0.25
. ﬂ_\_GD‘ ﬂ_\_GNA‘ ﬂ_\_GG\

2-way 3-way
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S MBE Summary

Changes for the Better

* We addressed overviews of generative Al and quantum Al

* We proposed new methods for quantum few-shot learning using quantum diffusion
models

— We introduced 3 different approaches based on QDDM’s generation/diffusion/denoising
— Our methods demonstrated significant improvement up to 30% gain

— We also validated that our method has a high resilience to the quantum noise

— We evaluated different QNN ansatz

— Zero-shot capability was discussed too

e Future work:

— Enhancing the capabilities of QDM through improvements in model architecture and
optimization techniques, enabling more intricate datasets with diverse and high-dimensional
features for diverse real-world applications.

* Questions?
— koike@merl.com
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