

Ensembling Personalized Quantum Models with Local Differential Privacy via Meta-Learning

Flavjo Xhelollari, Juntao Chen

Fordham University

fx1 [at] fordham [dot] edu

Motivation

Quantum Machine Learning (QML) holds promises for faster, more efficient Machine Learning.

Privacy concerns arise as user data is required for model training.

Utilizing a de-centralized approach for building a model.

Problem Statement

- Q: How to train user-specific QML models that ensure privacy and maintain high accuracy?
- Proposed solution : Hybrid QC framework with ε_i -LDP at the user level, and meta-learner to combine individual models.

Background

QML combines QC and ML, and makes use of VQCs.

LDP ensures data privacy by perturbing information at the user level, before sharing. It also balances privacy and utility.

Related Works

Hybrid QC Architectures :

- Focus on individual models, not ensembles.

[Hirce et al., 2023 ; Kashefi 2023 ; Gong et al., 2020]

DP and QML :

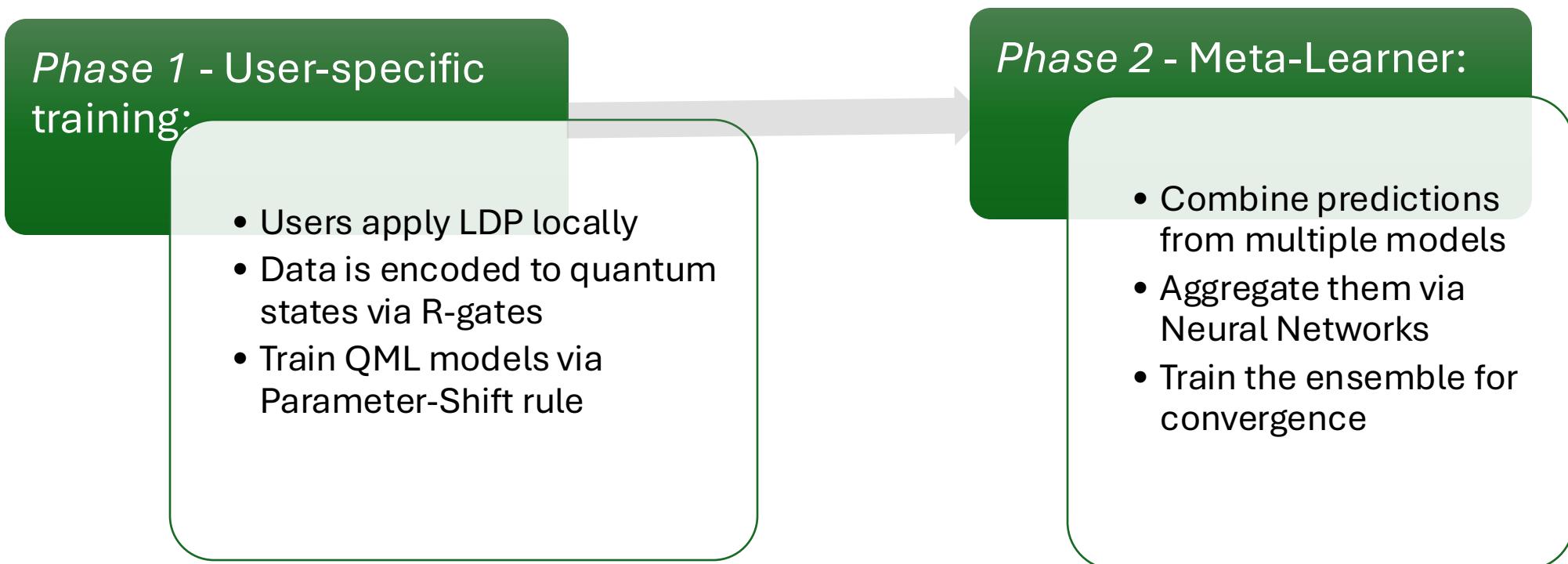
- Rely on centralized mechanisms (e.g. Federated Learning).

[Nunez et al., 2022 ; Kashefi 2023 ; Watkins et al., 2023]

Our contribution:

- Customizable LDP integrated in QML training.
- Meta-Learning ensemble for multiple VQC-based models.

Methodology



Framework

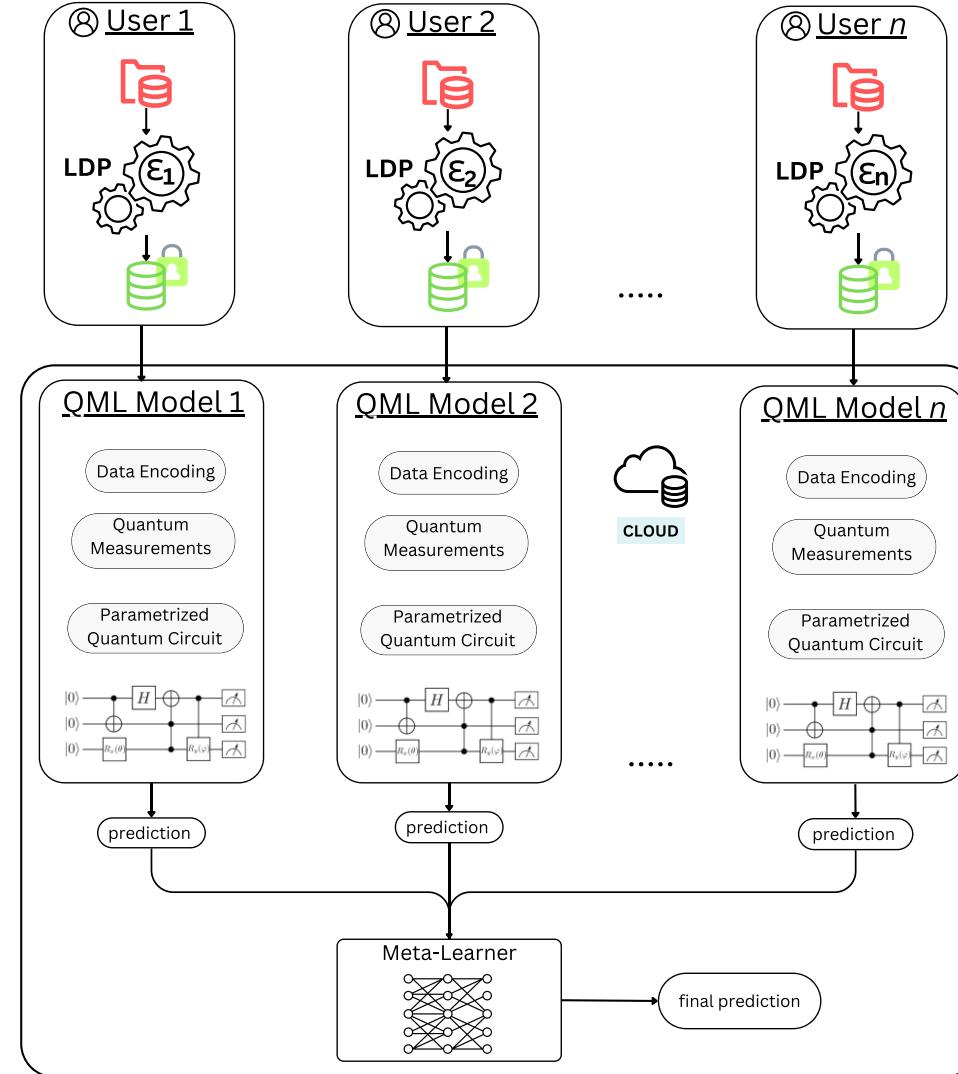


Figure 1. Framework Overview

Experimental Setup

01

Datasets : MNIST,
IRIS for binary
classification.

02

Privacy budgets
ranging from 0.1 to
5.0.

03

Quantum Models
built via PennyLane,
using 8-qubits with
strongly entangling
layers.

04

Metrics : Accuracy,
loss, and privacy-
performance
tradeoffs.

Results

IRIS :

- Stronger privacy results in slightly lower accuracy compared to the no-LDP.
- Smaller dataset sizes result in smoother convergence patterns.

Figure 2. Training loss of the ensembles

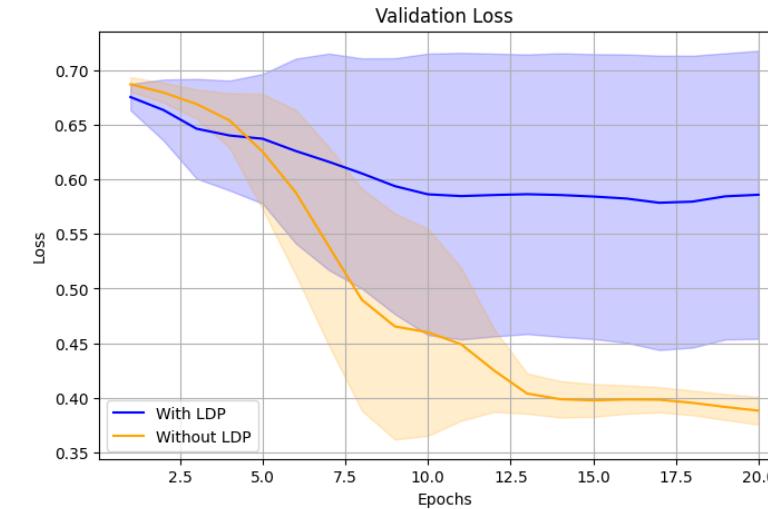


Figure 3. Validation loss of the ensembles

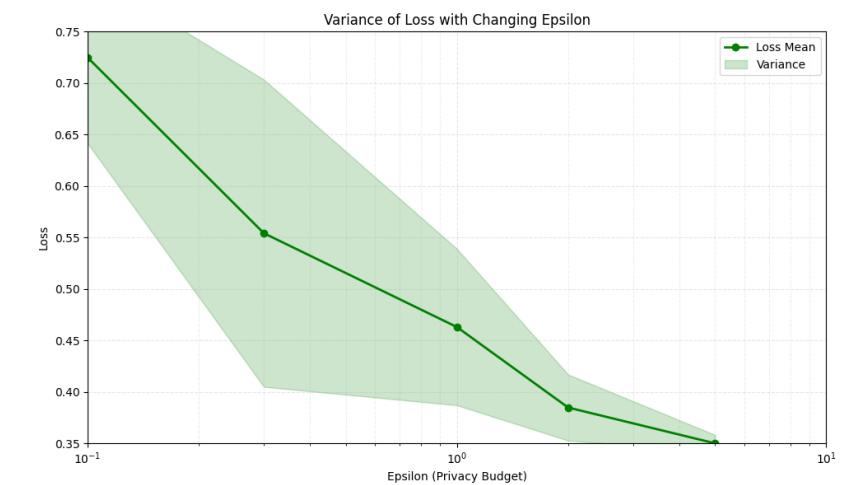
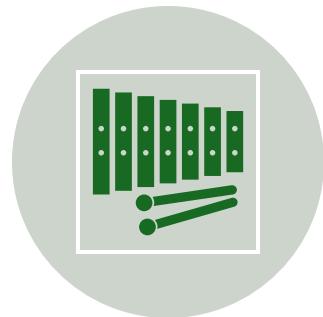


Figure 4. Variance loss w.r.t. ϵ

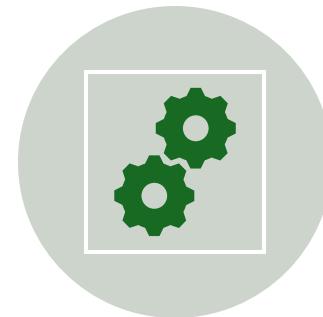
Conclusion

THE PROPOSED
FRAMEWORK ENSURES
STRONG PRIVACY
GUARANTEES WITH
MINIMAL PERFORMANCE
LOSS.



META-LEARNING
ENSEMBLES MITIGATE THE
TRADE-OFF BETWEEN
PRIVACY AND ACCURACY.

EXPERIMENTAL RESULTS
VALIDATE THE
FRAMEWORK'S
EFFECTIVENESS ACROSS
DIFFERENT SCENARIOS.



FUTURE WORK:
EXPLORE ADVANCED
ARCHITECTURES FOR
LARGER DATASETS, EXTEND
THE FRAMEWORK TO MULTI-
MODAL CLASSIFICATION
TASKS, INVESTIGATE IN REAL-
WORLD APPLICATIONS
(HEALTHCARE, FINANCE..)

Q&A

THANK YOU