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Motivation

@ Quantum Machine Learning (QML) holds promises for faster, more efficient
Machine Learning.

Privacy concerns arise as user data is required for model training.

m Utilizing a de-centralized approach for building a model.



Problem Statement

* Q: How to train user-specific QML models that ensure privacy and
maintain high accuracy?

* Proposed solution : Hybrid QC framework with €,-LDP at the user
level, and meta-learner to combine individual models.



Background

Iili'l QML combines QC and ML, and makes use of VQCs.

LDP ensures data privacy by perturbing information at the user
level, before sharing. It also balances privacy and utility.
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Related Works

Hybrid QC Architectures :

e Focus on individual models, not ensembles.
[Hirce et al., 2023 ; Kashefi 2023 ; Gong et al., 2020]

DP and QML :

e Rely on centralized mechanisms (e.g. Federated Learning).
[Nunezetal., 2022 ; Kashefi 2023 ; Watkins et al., 2023]

Qur contribution:
* Customizable LDP integrated in QML training.
* Meta-Learning ensemble for multiple VQC-based models.




Methodology

Phase 1 - User-specific

training;

e Users apply LDP locally

e Datais encoded to quantum
states via R-gates

e Train QML modelsvia
Parameter-Shift rule

~

Phase 2 - Meta-Learner:

e Combine predictions
from multiple models

e Aggregate themvia
Neural Networks

¢ Train the ensemble for
convergence




Framework
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Figure 1. Framework Overview



Experimental Setup

01 02 03

Datasets : MNIST, Privacy budgets Quantum Models
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Metrics : Accuracy,
IRIS for binary ranging from 0.7 to built via PennylLane,

classification. 5.0. using 8-qubits with
strongly entangling
layers.

loss, and privacy-
performance
tradeoffs.




Results

RIS :

e Stronger privacy results in
slightly lower accuracy
compared to the no-LDP.

e Smaller dataset sizes result
in smoother convergence
patterns.

MNIST :

e LDP accuracy improves with
higher €.

e Both LDP and no-LDP
versions converge, but LDP
ensemble shows higher
variance due to the noise.
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Figure 2. Training loss of the ensembles
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Figure 3. Validation loss of the ensembles
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Conclusion

o

THE PROPOSED
FRAMEWORK ENSURES
STRONG PRIVACY
GUARANTEES WITH
MINIMAL PERFORMANCE
LOSS.

I
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META-LEARNING
ENSEMBLES MITIGATE THE
TRADE-OFF BETWEEN
PRIVACY AND ACCURACY.

EXPERIMENTAL RESULTS
VALIDATE THE
FRAMEWORK’S

EFFECTIVENESS ACROSS

DIFFERENT SCENARIOS.
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FUTURE WORK:

EXPLORE ADVANCED
ARCHITECTURES FOR
LARGER DATASETS, EXTEND
THE FRAMEWORK TO MULTI-
MODAL CLASSIFICATION
TASKS, INVESTIGATE IN REAL-
WORLD APPLICATIONS
(HEALTHCARE, FINANCE..)



Q&A

THANK YOU
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